LANE MORPH: Machine Learning Powered Divider For Traffic Volume Adaptation
DOI:
https://doi.org/10.5281/zenodo.14811747Keywords:
Smart Traffic Management, Machine Learning, Real-time Vehicle Detection, IoT, Dynamic Road DividersAbstract
LaneMorph is a machine learning-powered system designed to optimize urban traffic management using IoT and real-time video processing. By dynamically adjusting road dividers based on traffic density, the system enhances lane utilization, reduces congestion, and prioritizes emergency vehicles. This paper details the architecture, implementation, and potential impact of LaneMorph in smart city infrastructure. Additionally, the system integrates various sensor technologies, predictive algorithms, and automation mechanisms to improve traffic flow efficiency and ensure road safety.
References
Khanke, P., & Kulkarni, P. S. (2014). A technique on road traffic analysis using image processing. International Journal of Engineering Research, 3(2).
Sundar, R., Hebbar, S., & Golla, V. (2014). Implementing intelligent traffic control system for congestion control, ambulance clearance, and stolen vehicle detection. IEEE Sensors Journal, 15(2), 1109–1113. https://doi.org/10.1109/JSEN.2014.2360288
Nagaraj, U., Rathod, J., Patil, P., Thakur, S., & Sharma, U. (2013). Traffic jam detection using image processing. International Journal of Engineering Research and Applications, 3(2), 1087–1091.
Bhusari, S., Patil, S., & Kalbhor, M. (2015). Traffic control system using Raspberry Pi. Global Journal of Advanced Engineering Technologies, 4(4), 413–415.
Lavanya, N. L., Bhat, A., Bhanuranjan, S. B., & Narayan, K. L. (2023). Enhancing the capabilities of remotely piloted aerial systems through object detection, face tracking, digital mapping, and gesture control. International Journal of Human Computations & Intelligence, 2(3), 147–158.
Ahmed, S. T., Kumar, V. V., & Kim, J. (2023). AITel: eHealth augmented-intelligence-based telemedicine resource recommendation framework for IoT devices in smart cities. IEEE Internet of Things Journal, 10(21), 18461-18468.
Kawle, A., Shah, D., Doshi, K., Bakhtiani, M., Gajja, Y., & Singh, P. (2017). Movable traffic divider: A congestion release strategy. International Journal of Recent Advances in Engineering & Technology (IJRAET).
Agrawal, S., & Maheshwari, P. (2021, January). Controlling of smart movable road divider and clearance ambulance path using IoT cloud. 2021 International Conference on Computer Communication and Informatics (ICCCI) (pp. 1–4). IEEE. https://doi.org/10.1109/ICCCI50826.2021.9402443
Dalmia, H., Damini, K., & Nakka, A. G. (2018, September). Implementation of movable road divider using Internet of Things (IoT). 2018 International Conference on Computing, Power and Communication Technologies (GUCON) (pp. 968–971). IEEE. https://doi.org/10.1109/GUCON.2018.8674942
Sun, Z., Bebis, G., & Miller, R. (2006). On-road vehicle detection: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(5), 694–711. https://doi.org/10.1109/TPAMI.2006.104
Kumar, S. S., Ahmed, S. T., Xin, Q., Sandeep, S., Madheswaran, M., & Basha, S. M. (2022). Unstructured Oncological Image Cluster Identification Using Improved Unsupervised Clustering Techniques. Computers, Materials & Continua, 72(1).
Temkar, R., Asrani, V., & Kannan, P. (2015). IoT: Smart vehicle management system for effective traffic control and collision avoidance. International Journal of Science and Research (IJSR), 4(05).
Lokesh, S., & Reddy, T. P. (2014). An adaptive traffic control system using Raspberry Pi. International Journal of Engineering Sciences & Research Technology, 3(6), 831–835.
Ahmed, S. T., & Basha, S. M. (2022). Information and communication theory-source coding techniques-part II. MileStone Research Publications.
Vijayananda, N., Lavanya, N. L., Sattigeri, N. N., Nisarga, R. K., & Pooja, N. M. (2023). Abnormal event detection and signaling in multiple video surveillance scenes using CNN. International Journal of Human Computations & Intelligence, 2(3), 106–116.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Lavanya N L, Anvith Krishna N, Arun Kumar V Savanvur, Shrivatsa R S, Udaya Kumar Shetty

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.