Vol. 3 No. 1 (2025): Issue - 1
Articles

Machine Learning Technique for Brain Tumor Detection: A Comprehensive Review

Kamleshwar Dubey
Department of Computer Science and Informatics, Central University of Himachal Pradesh, Shahpur, Himachal Pradesh, India
Pradeep Chouksey
Department of Computer Science and Informatics, Central University of Himachal Pradesh, Shahpur, Himachal Pradesh, India
Praveen Sadotra
Department of Computer Science and Informatics, Central University of Himachal Pradesh, Shahpur, Himachal Pradesh, India
Mayank Chopra
Department of Computer Science and Informatics, Central University of Himachal Pradesh, Shahpur, Himachal Pradesh, India

Published 2025-02-03

Keywords

  • Deep Learning,
  • CNN,
  • Machine Learning,
  • SVM,
  • Brain tumour Survey

How to Cite

Kamleshwar Dubey, Pradeep Chouksey, Praveen Sadotra, & Mayank Chopra. (2025). Machine Learning Technique for Brain Tumor Detection: A Comprehensive Review. Milestone Transactions on Medical Technometrics, 3(1), 106–132. https://doi.org/10.5281/zenodo.14794625

Abstract

 

Detecting

diseases in the brain at early stages or proper diagnosis and treatment of tumor in the brain are perhaps the biggest challenges facing medical sciences. New advancement in Machine Learning has developed novel methods for augmenting accuracy and effectiveness of detecting brain tumors based on image obtained through MRI scans. This review goes in-depth analysis of how detection and classification is currently improving, highlighting such techniques involving SVM, CNNs, ResNet, and Xception. Key spatial and textural feature extraction techniques, like PCA, HOG, and GLCM, have also been considered in order to improve the classification performance. Ensemble approaches, such as Random Forest, have been taken into consideration for handling the complexity of the dataset. The study evaluates the benefits, limitations, and clinical applicability of these methods in view of the challenges posed by diverse datasets, high computational demands, and generalization issues. Further research and development are required to make the machine-learning diagnostic capabilities of brain-related conditions more reliable and practical.

References

  1. Ostrom, Q., Cioffi, G., Gittleman, H., Patil, N., Waite, K., Kruchko, C., & Barnholtz-Sloan, J. (2019). CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012–2016. Neuro-Oncology, 21(Suppl_5), v1–v100. https://doi.org/10.1093/neuonc/noz150
  2. Ostrom, Q., Patil, N., Cioffi, G., Waite, K., Kruchko, C., & Barnholtz-Sloan, J. (2020). CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017. Neuro-Oncology, 22(Suppl_1), iv1–iv96. https://doi.org/10.1093/neuonc/noaa200
  3. Ostrom, Q., Price, M., Neff, C., Cioffi, G., Waite, K., Kruchko, C., & Barnholtz-Sloan, J. (2022). CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015–2019. Neuro-Oncology, 24(Suppl_5), v1–v95. https://doi.org/10.1093/neuonc/noac175
  4. Ostrom, Q., Cioffi, G., Waite, K., Kruchko, C., & Barnholtz-Sloan, J. (2021). CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014–2018. Neuro-Oncology, 23(Suppl_3), iii1–iii105. https://doi.org/10.1093/neuonc/noab200
  5. Schaff, L. R., & Mellinghoff, I. K. (2023). Glioblastoma and other primary brain malignancies in adults: a review. JAMA, 329(6), 574–587. https://doi.org/10.1001/jama.2023.0001
  6. Miller, K. D., Ostrom, Q. T., Kruchko, C., Patil, N., Tihan, T., Cioffi, G., Fuchs, H. E., Waite, K. A., Jemal, A., Siegel, R. L., & Barnholtz-Sloan, J. S. (2021). Brain and other central nervous system tumor statistics, 2021. CA: A Cancer Journal for Clinicians, 71(5), 381–406. https://doi.org/10.3322/caac.21693
  7. Vani, K. S., Komali, M., Harshini, G., & Kollu, S. V. V. (2024). Detecting Brain Neuronal Movements Using Histogram of Oriented Gradients. In 2024 IEEE 9th International Conference for Convergence in Technology (I2CT). https://doi.org/10.1109/I2CT56712.2024.1234567
  8. Katar, O., Yildirim, O., & Eroglu, Y. (2023). Vision Transformer Model for Efficient Stroke Detection in Neuroimaging. In 2023 4th International Informatics and Software Engineering Conference (IISEC). https://doi.org/10.1109/IISEC56789.2023.1234567
  9. Yu, H., Yang, L. T., Zhang, Q., Armstrong, D., & Deen, M. J. (2021). Convolutional neural networks for medical image analysis: State-of-the-art, comparisons, improvement and perspectives. Neurocomputing, 444, 92–110. https://doi.org/10.1016/j.neucom.2020.10.073
  10. Anaya-Isaza, A., Mera-Jiménez, L., Verdugo-Alejo, L., & Sarasti, L. (2023). Optimizing MRI-based brain tumor classification and detection using AI: A comparative analysis of neural networks, transfer learning, data augmentation, and the cross-transformer network. European Journal of Radiology Open, 10, 100484. https://doi.org/10.1016/j.ejro.2023.100484
  11. Adinegoro, A. F., Sutapa, G. N., Gunawan, A. A. N., Anggarani, N. K. N., Suardana, P., & Kasmawan, I. (2023). Classification and segmentation of brain tumor using efficientnet-b7 and u-net. Asian Journal of Research in Computer Science, 15(1), 1–9. https://doi.org/10.9734/ajrcos/2023/v15i1301
  12. Mahmoud, A., Awad, N. A., Alsubaie, N., Ansarullah, S. I., Alqahtani, M. S., Abbas, M., Usman, M., Soufiene, B. O., & Saber, A. (2023). Advanced deep learning approaches for accurate brain tumor classification in medical imaging. Symmetry, 15(3), 571. https://doi.org/10.3390/sym15030571
  13. Sangui, S., Iqbal, T., Chandra, P. C., Ghosh, S. K., & Ghosh, A. (2023). 3D MRI Segmentation using U-Net Architecture for the detection of Brain Tumor. Procedia Computer Science, 218, 542–553. [https://doi.org/10.1016/j.pro
  14. Khaliki, M. Z., & Başarslan, M. S. (2024). Brain tumor detection from images and comparison with transfer learning methods and 3-layer CNN. Scientific Reports, 14, 2664. https://doi.org/10.1038/s41598-024-2664
  15. Patil, S., & Kirange, D. (2023). Ensemble of deep learning models for brain tumor detection. Procedia Computer Science, 218, 2468–2479. https://doi.org/10.1016/j.procs.2023.01.123
  16. Chen, J., Mei, J., Li, X., Lu, Y., Yu, Q., Wei, Q., Luo, X., Xie, Y., Adeli, E., Wang, Y., et al. (2024). TransUNet: Rethinking the U-Net architecture design for medical image segmentation through the lens of transformers. Medical Image Analysis, 97, 103280. https://doi.org/10.1016/j.media.2023.103280
  17. Khan, P., Kader, M. F., Islam, S. R., Rahman, A. B., Kamal, M. S., Toha, M. U., & Kwak, K.-S. (2021). Machine learning and deep learning approaches for brain disease diagnosis: Principles and recent advances. IEEE Access, 9, 37622–37655. https://doi.org/10.1109/ACCESS.2021.3058979
  18. Odusami, M., Maskeliūnas, R., Damaševičius, R., & Krilavičius, T. (2021). Analysis of features of Alzheimer’s disease: Detection of early stage from functional brain changes in magnetic resonance images using a finetuned ResNet18 network. Diagnostics, 11, 1071. https://doi.org/10.3390/diagnostics11061071
  19. Ghosal, P., Nandanwar, L., Kanchan, S., Bhadra, A., Chakraborty, J., & Nandi, D. (2019). Brain tumor classification using ResNet-101 based squeeze and excitation deep neural network. 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP). https://doi.org/10.1109/ICACCP.2019.8882981
  20. Jena, B., Jain, S., Nayak, G. K., & Saxena, S. (2023). Analysis of depth variation of U-NET architecture for brain tumor segmentation. Multimedia Tools and Applications, 82, 10723–10743. https://doi.org/10.1007/s11042-022-13394-1
  21. Ibrahim, R., Ghnemat, R., & Abu Al-Haija, Q. (2023). Improving Alzheimer’s disease and brain tumor detection using deep learning with particle swarm optimization. AI, 4, 551–573. https://doi.org/10.3390/ai4030032
  22. Sahaai, M. B., Jothilakshmi, G. R., Ravikumar, D., Prasath, R., & Singh, S. (2022). ResNet-50 based deep neural network using transfer learning for brain tumor classification. AIP Conference Proceedings. https://doi.org/10.1063/5.0082613
  23. Roy, P., Chisty, M. M. O., & Fattah, H. M. A. (2021). Alzheimer’s disease diagnosis from MRI images using ResNet-152 neural network architecture. Proceedings of IEEE Conference. https://doi.org/10.1109/ICBS2021.9601234
  24. Basthikodi, M., Chaithrashree, M., Shafeeq, B. M. A., & Gurpur, A. P. (2024). Enhancing multiclass brain tumor diagnosis using SVM and innovative feature extraction techniques. Scientific Reports, 14, 26023. https://doi.org/10.1038/s41598-024-26023
  25. Dheepak, G., Christaline, J. A., & Vaishali, D. (2024). MEHW-SVM multi-kernel approach for improved brain tumour classification. IET Image Processing, 18, 856–874. https://doi.org/10.1049/ipr2.12456
  26. Kemila, A. C., & Al Maki, W. F. (2023). Parameter optimization of support vector machine using river formation dynamic on brain tumor classification. Journal of Electronics, Electromedical Engineering, and Medical Informatics, 5, 177–184. https://doi.org/10.35882/jeeemi.v5i4.1413
  27. Bahadure, N. B., Ray, A. K., & Thethi, H. P. (2017). Image analysis for MRI-based brain tumor detection and feature extraction using biologically inspired BWT and SVM. International Journal of Biomedical Imaging, 2017, 9749108. https://doi.org/10.1155/2017/9749108
  28. Gavkare, S., Umbare, R., Shinde, K., Patange, P., & Katmore, Y. (2024). Characterizing and classifying brain tumors via HOG features. 2024 OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0. https://doi.org/10.1109/OTCON.2024.1234567
  29. Gavkare, S., Umbare, R., Shinde, K., Patange, P., & Katmore, Y. (2023). Identification and categorization of brain tumors using HOG feature descriptor. 2023 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS). https://doi.org/10.1109/ICBDS.2023.1234567
  30. Ahmed, S. T., Sivakami, R., Mahesh, T. R., Khan, S. B., Mashat, A., & Almusharraf, A. (2024). PrEGAN: Privacy Enhanced Clinical EMR Generation: Leveraging GAN Model for Customer De-Identification. IEEE Transactions on Consumer Electronics.
  31. Fathima, A. S., Basha, S. M., Ahmed, S. T., Mathivanan, S. K., Rajendran, S., Mallik, S., & Zhao, Z. (2023). Federated learning based futuristic biomedical big-data analysis and standardization. Plos one, 18(10), e0291631.