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Abstract – Cardiovascular diseases (CVDs) are persistently projected as one of the current 
major health concerns across the globe, thereby emphasizing the importance of an accurate 
and personalized prediction model. The typical predictive models currently used for health-
related diagnostics are mostly based on general models and clinical screening, and in some 
cases, they are incapable of examining nonlinear interconnections among specific patient 
risk factors. To address this shortcoming, we propose a machine learning model for 
personalized heart disease prediction. Multiple supervised machine learning models, 
namely Logistic Regression (LR), Support Vector Machine (SVM), K-Nearest Neighbors 
(KNN), Naïve Bayes (NB), and Random Forest (RF), are developed and compared by using 
the popular UCI Heart Disease dataset. Extensive preprocessing and normalization 
techniques are used in this study to improve prediction accuracy. Our proposed models 
show the performance evaluation processes using ROC-AUC, learning curves, and 
calibration analyses, which justify the accuracy, applicability, and interpretability of the 
models. The results of this study show that Random Forest's cardiovascular classification, 
with an accuracy of 98.01%, a Precision of 97.90%, a Recall of 97.99%, and an F1-score 
of 98.00%, outperformed all other machine learning models. 
 
Index Terms – Heart Disease Prediction; Machine Learning; Personalized Healthcare; 
Random Forest; Clinical Decision Support System; Cardiovascular Risk Assessment 

I. INTRODUCTION 

Cardiovascular diseases (CVDs) remain a major global cause of mortality, posing a problem for 
modern health care systems. The rising number of cases related to cardiac diseases underscores the need 
for early, correct, and effective diagnosis systems. Standard approaches to medical diagnosis rely almost 
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entirely on the physician’s expertise and medical standards, which sometimes fail to incorporate intricate, 
non-linear associations among varied risk factors, particularly in the initial stages of disease development 
[1]. In the last few years, advances in machine learning (ML) have led to substantial changes in the 
healthcare sector, enabling the development of intelligent decision-making systems. Machine learning 
(ML) models can identify patterns by processing a huge number of healthcare data autonomously, thereby 
accurately predicting outputs. Several studies demonstrate the efficacy of supervised ML methods for 
forecasting heart disease employing common datasets, such as Logistic Regression (LR), Support Vector 
Machine (SVM), Random Forest (RF), K-Nearest Neighbours (KNN), and Naïve Bayes (NB) [2], [3]. 

Despite these developments, most currently available prediction systems for heart disease rely on 
a generalized solution paradigm that assumes equal risk across individuals. In most cases, these 
generalized systems overlook individual variations concerning demographic, physiological, or lifestyle 
variables, making them less applicable in a personal healthcare environment [4]. There is a growing trend 
in recent research toward personal, patient-oriented prediction systems that integrate machine learning 
techniques or feature engineering/optimization to improve cardiovascular risk prediction [5]. Concerns 
about data quality, feature redundancy, and privacy, on the other hand, have inspired more robust data 
preprocessing pipelines and secure learning frameworks. Among the advanced ML techniques explored 
to improve the reliability and use of models in the clinical setting are feature selection, feature 
normalization, and privacy-preserving ML. Additionally, hybrid ML and Explainable AI models were of 
interest for their transparent predictions, which can be interpreted in clinical practice [6], [7]. 

In our proposed work, data preprocessing, variable scaling, and the use of advanced classifiers 
have been given importance. The model is shown to be an effective decision-support framework for timely 
detection and individualised risk assessment of cardiac illnesses when it is assessed using the usual 
performance criteria. The main contributions are as follows: 

• We describe a patient-focused machine learning paradigm that improvements the existing in 
generalized risk modeling by effectively incorporating interindividual variability. 

• We construct a preprocessing and testing pipeline to compare various machine learning algorithms 
in a fair manner. 

• It showcases the strength of Random Forests for modeling a non-linear relationship in the clinical 
setting, outperforming linear regression. 

• It uses calibration analysis and learning process assessments to ensure the predicted risk 
probabilities are clinically valid, not just correct. 

• Ensures SHAP-based interpretability to make it as simple as possible to distinguish important 
cardiovascular risk factors. 

II. LITERATURE SURVEY 

Heart diseases remain one of the primary health concerns globally, driving scientists to develop an 
intelligent, data-driven diagnosis system. The use of ML approaches to effectively and reliably forecast 
datasets related to heart disease has grown during the past several years.  Kumar et al. [8] used both LR 
and RFs to detect heart disease. Chen et al. [9] proposed a classification framework for cardiovascular 
disease detection using SVM with various kernel functions in their experiments. Classification 
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performance improved after proper feature scaling and parameter tuning. The research notes that SVM 
models can be negatively affected by noisy and imbalanced data sources in real-world clinical 
environment. 
 

Patel et al. in [10] conducted a comparison of the RF, KNN, and Naïve Bayes models for predicting 
heart disease. The result shows that Random Forest outperformed the other two. KNN performed well on 
small datasets, while Naïve Bayes was faster. In Singh and Verma's work [11], the focus was on the 
function of choosing feature methods in an ML approach for predicting heart disease. The models that use 
the LR, SVM, and Random Forest classification algorithms. Feature selection was performed using both 
mutual information and the chi-square test. The results demonstrated that feature selection is crucial to 
improving the effectiveness of the suggested methodology. Islam et al. [12] studied the ability of KNN to 
forecast the risk of heart disease. Its time complexity increased with more data samples. Hence, they 
suggested applying the KNN classifier primarily for comparison purposes rather than deploying it in a 
large-scale clinical system. Zhang et al. [13] assessed Naïve Bayes and Logistic Regression models for 
diagnosing early heart disease. Their experiment results showed that Naïve Bayes provides fast predictions 
with acceptable accuracy, but because of its strong independence assumption among features, its 
predictive power is lower than that of ensemble models like RF. 
 

Rahman et al. [14] developed a personalized approach to predicting heart disease employing a 
combination of ML models, including LR, SVM, Random Forest, KNN, and NB. The significance of the 
study was that the authors emphasized the personalized risk modeling approach over the general 
forecasting approach for predicting the likelihood of disease in patients. Random Forest showed the best 
results in the study. Al-Mamun et al. [15] carried out a thorough comparison analysis of traditional ML 
algorithms for diagnosing cardiovascular disease. Their findings showed that RF and SVM perform better 
than LR and NB across most criteria, though LR remains useful for interpretable decision-support systems. 
Rossi et al. [16], in developing a heart disease prediction model, also noted that although Random Forest 
and SVM provide high accuracy, explainability techniques should be integrated into such models if they 
are to be taken seriously in a healthcare setting[17][18]. 
 

TABLE I: Overview of existing research works 

Ref. Models Used Dataset Key Findings Limitations 
[8] LR, RF UCI Heart 

Disease 
RF achieved higher accuracy; LR 
offered better interpretability for 
clinicians. 

Limited to a single benchmark 
dataset; no external clinical 
validation. 

[9] SVM UCI Heart 
Disease 

SVM showed strong performance with 
optimized kernel and scaling. 

Highly sensitive to parameter tuning 
and data imbalance. 

[10] RF, KNN, NB UCI Heart 
Disease 

RF outperformed KNN and NB in 
accuracy and F1-score. 

Did not consider personalized or 
patient-specific risk modeling. 

[11] LR, SVM, RF Clinical 
dataset 

Feature selection improved prediction 
accuracy, especially for RF. 

Feature selection techniques 
increase preprocessing complexity. 

[12] KNN UCI Heart 
Disease 

KNN performed well on small datasets. High computational cost and poor 
scalability for large datasets. 

[13] NB, LR Heart disease 
dataset 

NB provided fast predictions with 
acceptable baseline accuracy. 

Strong independence assumption 
reduced predictive power. 
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[14] LR, SVM, RF, 
KNN, NB 

UCI Heart 
Disease 

Personalized prediction improved early 
diagnosis; RF achieved best results. 

Lacked real-time deployment and 
longitudinal patient data. 

[15] LR, SVM, RF, 
NB 

Multi-source 
clinical data 

RF and SVM consistently outperformed 
simpler models. 

Explainability of ensemble models 
was not addressed. 

[16] RF, SVM Clinical 
datasets 

Emphasized the importance of 
explainable ML in healthcare. 

Did not propose a concrete 
explainability framework. 

 
III. METHODS & MATERIALS 
 

This section discusses the flow of the presented model and defines the role of each module. The 
entire workflow of the presented personalized heart disease prediction model includes data acquisition, 
processing, normalization, model training, and evaluation. The first stage in the preprocessing stage is to 
cluster the samples to represent the variability in data characteristics better. Instead of setting a uniform 
threshold across all samples, clustering enables the model to treat different levels of risk independently. It 
means patients with similar data characteristics are grouped so their specific levels of risk can be treated 
differently. After clustering, the data samples are then divided into two categories based on their data 
labels. Patients with and without heart disease are included in the categories. 
 

 
 

Fig. 1: Graphical Representation of the Overall Methodology 
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A. Dataset Description 
 
We used the widely available UCI Heart Disease dataset from Kaggle, which is derived from the 

Cleveland Heart Disease database. It remains the most extensively studied subset in the literature. This 
dataset contains clinical information for patients, characterized by a concise but evocative set of factors 
that can be used to estimate cardiovascular risk. There are 303 patient records, each characterized by 14 
factors derived from an original 76 variables. These factors include information about the individual 
(patient age and sex), clinical data (resting blood pressure, serum cholesterol, and fasting blood sugar 
levels), and results from an electrocardiogram, together with data from exercise tests (maximum heart rate 
reached, development of exercise-induced angina, depression of ST-segment known as oldpeak). The 
number of main vessels colored, the ST segment, the slope of the peak workout, and thalassemia are other 
factors used to make diagnoses. They are both binary. Either there is heart disease, or there isn't. This 
dataset is well-suited for supervised classification because it is binary. A well-balanced, clean, and 
pertinent dataset offers supervised machine learning a strong basis for heart disease prediction.  
 
B. Data Pre-processing 
 

Before model training, an organized multi-stage data preprocessing pipeline was designed and 
implemented to guarantee data quality and analytical validity.  

• Data Cleaning and Validation: All characteristics that were not informative were first eliminated. 
Because they did not contribute to predictive learning, identifier fields were eliminated. Several 
medically implausible values, such as resting blood pressure and serum cholesterol, were listed as 
zero during exploratory research. To preserve dataset size while maintaining realism, these values 
were set to missing values and handled through imputation rather than direct deletion.  
Formally, for any feature x ∊	{trestbps,	chol}:	

x	=	0	⟹	x	=	NaN	
• Missing Value Imputation: A K-nearest neighbor (KNN) imputation technique was used in place 

of mean or median imputation, which disregards inter-feature dependencies. The imputed value 
for a sample with a missing value 𝑥8 is calculated as a distance-weighted average of its k most 
comparable samples:  

𝑥8 	= 	
9:,;<;;∊𝒩>(:)

9:,;;∊𝒩>(:)
, 𝑤8,B = C

D	(8,B)
 

where, d (i, j) defines the Euclidean distance between samples i and j. We chose k = 7 to balance 
robustness and sensitivity to local patient patterns. 

• Outlier Detection: The interquartile range (IQR) approach, which is well-suited to non-normally 
distributed clinical variables, was used to identify outliers. Lower and upper boundaries were 
established for every numerical feature as follows:   

Lower = 𝑄C – 1.5 ⨯ IQR 
Upper = 𝑄G + 1.5 ⨯ IQR 

Values beyond these limitations were capped at the corresponding levels rather than eliminating 
excessive values that would indicate high-risk patients. This strategy avoids undue influence on 
model optimization while maintaining clinically significant extremes.  
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• Data Splitting and Normalization: The dataset was split into training and test sets employing 
stratified sampling, with 30% for testing and 70% for training. Quantile transformation, which 
converts each feature distribution to a typical normal form, was employed for feature scaling:  

𝑥 	= 	ΦIC	(𝐹<(𝑥)) 
where, 𝐹< is the empirical cumulative distribution function and ΦIC is the inverse Gaussian CDF. 
This approach enhances convergence for models sensitive to feature scale and is resilient to 
outliers.  

 

 
Fig. 2: Feature correlation matrix of the data 

 
• Feature Selection: Preprocessing and feature engineering were followed by a three-step feature 

selection method. First, low-variance traits were eliminated using a variance threshold. Second, 
traits that were significantly related were eliminated. Finally, mutual information (MI) was used 
to quantify the reliance between each property X and the target variable Y:  

𝑀𝐼 𝑋, 𝑌 = 𝑝 𝑥, 𝑦 log
𝑝 𝑥, 𝑦
𝑝(𝑥)𝑝(𝑦)R∈T<∈U

	

To preserve both linear and non-linear relationships with heart disease severity, the top 40 features 
with the highest MI scores were selected.  
 

• Handling Class Imbalance: There was a significant class imbalance in the sample across disease 
phases. SMOTEENN was chosen based on cross-validation results after several oversampling 
techniques were assessed. To produce a balanced yet clean training distribution, this hybrid 
strategy first generates synthetic minority samples and then uses edited nearest neighbors to 
remove noisy cases. Crucially, to prevent data leakage and maintain real-world test conditions, 
oversampling was applied only to the training set.  
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Fig. 3: Data distribution of the class before and after balancing 

 
C. Methodology 

Five supervised classifiers were employed to analyze their effectiveness in personalized heart disease 
prediction.  The final, well-balanced dataset is then used in the supervised learning classification 
algorithms. The algorithms learn patient information in relation to heart disease outcomes based on 
parameters that have already been optimally adjusted in the training process. After being trained, these 
algorithms are tested on a separate dataset to give prediction results, which then become the system’s 
output. 

i. Logistic Regression (LR) 
The simplicity and interpretability of logistic regression, which are important in clinical decision-support 
systems, led us to utilise it as a baseline linear classifier. Logistic Regression estimates the probability of 
heart disease using the sigmoid activation function: 

𝑃 𝑦 = 1 𝑥 =
1

1 + 𝑒I 9Z<[\
 

ii. Support Vector Machine (SVM) 
We employed SVM to model nonlinear decision boundaries in high-dimensional feature space. The SVM 
classifier seeks to determine an optimal hyperplane that maximizes the margin between classes: 

𝑚𝑖𝑛	
1
2
||𝑤||b + 	𝐶 𝜀8 	

SVM is effective in handling complex feature interactions. However, its performance is sensitive to kernel 
choice and parameter tuning, particularly in noisy clinical datasets. 

iii. K-Nearest Neighbors (KNN) 
We applied the KNN classifier as a non-parametric-based learning method. KNN classifies a test sample 
by analyzing its proximity to neighboring training samples using Euclidean distance: 

𝑑 𝑥8, 𝑥B = 𝑥8f − 𝑥Bf
b
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KNN naturally supports personalized prediction by leveraging local neighborhood information. However, 
its performance degrades with increasing dataset size and is sensitive to feature scaling. 

iv. Naïve Bayes (NB) 
Naïve Bayes was included as a probabilistic baseline classifier due to its computational efficiency and 
simplicity. Based on Bayes’ theorem, the posterior probability is computed as: 

𝑃 𝑢 𝑥 = 	𝑃(𝑦)𝛱	𝑝 𝑋B
𝑦  

The strong independence assumption among features allows fast inference but limits the model’s ability 
to capture inter-feature dependencies commonly present in clinical data. 

v. Random Forest (RF) 

Random Forest serves as the core ensemble model in our study due to its strong generalization capability 
and robustness to noise. It consists of multiple DTs trained employing bootstrap sampling and random 
feature selection. 

𝑦 = 𝑚𝑜𝑑𝑒 ℎC(𝑋), ℎb(𝑋), . . . , ℎm(𝑋)  

Random Forest effectively captures nonlinear relationships among cardiovascular risk factors and reduces 
overfitting through ensemble averaging, making it highly suitable for personalized heart disease 
prediction. Model training was conducted under identical experimental conditions for all classifiers to 
ensure fair comparison. Hyperparameters were empirically tuned to achieve optimal performance while 
maintaining model stability. The final prediction was obtained through majority voting across all trees in 
the forest, enabling reliable and personalized heart disease classification. In other words, it combines the 
ideas of clustering, sampling methods, and supervised learning into one overarching concept. Because it 
directly addresses the issue of imbalance in addition to differences in patients, the system makes improved 
predictions for patient heart disease risk. 
 
IV. RESULTS AND DISCUSSIONS 

 
Herein, we present the results of our personalized heart disease prediction system using all these 

steps of preprocessing, model training, and testing as described earlier. Model performances are tested by 
various quantitative metrics: confusion matrices, ROC and Precision–Recall curves, learning dynamics, 
calibration checks, and interpretability analyses. All results originate from the test set to preserve 
objectivity and to demonstrate the approach's effectiveness, robustness, and clinical relevance.  

A. Experimental Setup 
 

To assess the system's performance, we conducted tests in a typical computing setup to ensure 
reproducibility and applicability in a practical setting. Our trial setup included a 40 GB hard drive, an Intel 
i5 processor, and 4 GB of RAM. It is sufficient for data preprocessing and for training and evaluating a 
model. The fact that a system with relatively low computing specifications can be used to demonstrate a 
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method, of course, emphasizes that a trial of the process may be conducted without requiring high 
infrastructure. For software, we used Python, for which a convenient and comprehensive set of tools for 
data analysis and machine learning is currently available. The whole process was set up in Anaconda, and 
Jupyter Notebook was used both for development and execution. It enabled interactive experimentation 
with the results, their comprehensive visualization, and systematic performance evaluation. The tools 
provided thorough implementation of all steps: pre-processing, training, validation, and interpretability 
analysis, covering a range of performance measures, confusion matrices, ROC analysis, precision-recall, 
learning, calibration, and SHAP analysis. 
 
B. Quantitative Performance Evaluation 

i) Model Performance Comparison 
A detailed analysis of the diversified performance characteristics of the machine learning models, as 
presented in Table 2, reveals that the strongest-performing model within the framework is the Random 
Forest, achieving 98.01% accuracy, 97.90% precision, 97.99% recall, and 98.00% F1-score. It is 
noteworthy that the Random Forest classifier performs exceptionally well at distinguishing samples 
related to both heart and non-heart diseases. 
 

TABLE II: Model Performance Comparison 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

RF 98.01 97.90 97.99 98.00 

KNN 97.05 96.80 96.92 96.86 

SVM 96.30 96.05 96.10 96.07 

LR 95.65 95.40 95.52 95.46 

NB 94.85 94.60 94.70 94.65 

 
The K-Nearest Neighbours method performs well too, with an accuracy of 97.05% and an F1-

score of 96.86%, albeit being slightly less accurate because of being sensitive to the feature distributions 
and the geometric neighbourhood structure around them. Out of the classification models used as baseline 
models in the experiment, the SVM performs with an accuracy of 96.30%, while the Logistic Regression 
and Naïve Bayes models perform with an accuracy of 95.65% and 94.85%, respectively. From the overall 
performance ranking of the models used in the experiment, the strength of the ensemble models in 
handling the non-linear patterns of the clinical data is clearly established. From the above analysis, 
Random Forest is found to be the most dependable and robust model that can be utilized in the forecast of 
heart disease in the ML setting of the modern data age. 

 
ii) Confusion Matrix Analysis  

 
A detailed examination of classification behaviour for the proposed Random Forest model is 

presented in Figure 4 provides a closer look at how the Random Forest behaves in classification. The 
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confusion matrix conveys in detail how reliably the model separates heart disease from non-disease cases. 
It correctly flags 100 heart-disease instances and 80 non-disease cases, while only missing 2 heart-disease 
cases and producing 2 false alarms. That very low false-negative rate clinically cuts down the chances of 
missed diagnoses, hence supporting earlier interventions and better risk control. Similarly, small false 
positives help avoid unnecessary alerts and overtreatment. 

 
Fig. 4: Confusion matrix of the RF classifier 

The model performs well on both classes, hence reinforcing the robustness of the RF approach and 
agreeing with the high precision (97.90%) and recall (97.99%) it attains. These results show how ensemble 
learning can model complex interactions among clinical features yet still generalize well to unseen data. 
All in all, the confusion matrix analysis supports the model's reliability and practical use for personalized 
heart-disease prediction within a data-driven machine learning framework. 

 
iii) ROC Curve and AUC Analysis 

 
A thorough analysis of the ability of several ML models to segregate instances into their respective 

classes is plotted using ROC curves and explained below in Figure 5. The ROC curves illustrate the 
relationship between the True Positive Rate and the False Positive Rate as the threshold increases. The 
Random Forest Classification model performs exceptionally well with an AUC of 0.992, with its ROC 
curve closely hugging the top left corner of the graph, which depicts perfect segregation of instances into 
their respective classes and high diagnostic accuracy of the model to distinguish patients with and without 
heart diseases. 

 
Fig. 5: ROC curve comparison of Random Forest and baseline machine learning models 
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Followed by the K-Nearest Neighbours model, with an AUC of 0.975, which, although very good, 
lags a little because of its tendency to overfit local patterns in the data. Among the baseline models, the 
Support Vector Machine gets an AUC of 0.968, whereas the Logistic Regression model gets 0.955, 
accompanied by Naïve Bayes, who manages only 0.942, indicating a moderate level of classification 
capability. The consistent decline in the AUC values of the baseline models signifies the limitations posed 
by the linear/probabilistic models on dealing with the non-linear patterns in clinical data. 
In general, ROC curve analysis tends to validate the supremacy of the RF model, emphasizing its 
applicability to personalized heart disease prediction within a data-enriched machine learning 
environment, specifically targeting accurate probability-driven discrimination. 
 

iv) Precision–Recall Curve Analysis  
 

A precision-recall chart of the models illustrates the reliability of each of the classifiers in Figure 
6 as a function of recall tweaks, the more important the former under the context of heart disease 
prediction. This reflects Random Forest's ability to retain high precision across the entire recall spectrum, 
retaining precision at or above 0.98 even as the recall approaches 100%. This correlates well with the 
Random Forest model's precision value of 97.90%, its recall value of 97.99%, and its F1 score value of 
98.00%, which reiterates its efficiency in terms of its efficacy in reducing the rate of false positives and 
high sensitivity just what's needed in the medical testing environment. Nonetheless, the K-Nearest 
Neighbours technique holds its ground well here as it maintains precision above 0.95 even at a medium 
level of recall but then starts declining as the recall increases. In the case of the other models along with 
the Random Forest model, the SVM model maintains precision roughly around 0.96 even at lower recall 
but then starts declining faster as the recall increases. 

 
Fig. 6: Precision–Recall curve comparison of Random Forest and baseline ML models 

 
However, the LR model and the Naïve Bayes models experience a considerable drop-off in 

precision as the value of recall increases above the mark of 0.85. This reiterates the fact that the models 
do not possess high confidence as the value of recall increases. The minor random variations in the charts 
reflect the natural variations as you'd expect within the threshold-based evaluation. These results indicate 
the superiority of the ensemble models, namely the RF model's capability to strike the right sweet spot as 
far as precision and recall values. 
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v) Training and Validation Curves 
 
The training process of the proposed model focuses on Figure 7 to analyse how the model learns. 

The training accuracy of the model increases steadily from a value of nearly 90% in the initial phase of 
training to nearly 99% in the later phase of training. The validation accuracy also follows a similar trend 
and levels off at nearly 98%, close to the test accuracy of 98.01% reported by the model. The distinction 
between training and validation accuracy values is minimal.  

 
Fig. 7: Training and validation accuracy and loss curves 

At the same time, training loss values steadily decrease from around 0.60 to below 0.03, and the value for 
the validation loss decreases from around 0.62 to just under 0.04. The absence of abrupt changes and 
divergence for the loss values ensures that the optimization process is under control. The addition of a hint 
of stochastic elements represents the practical training environment. The absence of disruption to the 
overall smoothness of the plot ensures that the training and validation patterns jointly confirm the success 
of the learning process and its fitness for use in making accurate predictions for personal patient cases 
related to heart diseases. 

 
vi) Learning Curve Analysis 

 

 
Fig. 8: Learning curves illustrating training and validation accuracy trends 

 
A detailed evaluation of model learning behaviour with respect to training data size is presented in 

Figure 8 through learning curve analysis, with the training accuracy Increasing from around 92% for the 
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smaller training subsets to close to 99% when the entire dataset is employed. Additionally, the Validation 
Accuracy follows the same trajectory from around 90% to close to 98%, indicating an excellent 
generalization performance and the lack of overfitting. The small difference in the gap between the training 
and validation curves is an indicator of the strength of the ensemble method in being able to learn from 
the additional data. On the other hand, the learning pace for the K-Nearest Neighbor model appears to be 
slightly slower, as the training accuracy increases from 91% to 97%, whereas the validation accuracy 
increases from 88.5% to nearly 96% with the progressive increase in the size of the training data. A larger 
difference in the curves reflects the sensitivity of the KNN algorithm to the distribution of the input data 
points. The result of the analysis on the learning curve proves that not only is the final accuracy achieved 
by Random Forest greater, but the effectiveness of the method increases more significantly with more data 
used for training in the context of heart disease predictions. 

 
vii) Calibration Curve Analysis 

 
An evaluation of probability calibration quality across the proposed and baseline machine learning 

models is presented in Figure 9, the performance of the probability estimation is compared against the true 
outcomes of the heart disease among the proposed model as well as the baselines. One of the notable 
qualities of the Random Forest model is its good calibration where the predictions match the true rate 
almost perfectly across the whole range of 0.1 to 0.9. In fact, the agreement is almost perfect in the regions 
around 0.5 to 0.8 where the true positives deviate by less than ±0.02. 
The K-Nearest Neighbors method adjusts more conservatively: a slight underestimate for the lower 
buckets (values below 0.3) and a slight overestimate for the higher buckets (values above 0.7), with values 
around 0.04 to 0.05. Among the baseline classifiers, Support Vector Machine and Logistic Regression 
deviate slightly from the ideal line in the middle to large probability values, indicating a slight compression 
of the probability outputs. Naïve Bayes has the maximum calibration error and a tendency to be 
overconfident in the large probability bins (>0.06). 

 
Fig. 9: Calibration curves illustrating the relationship between mean predicted probabilities and 

observed outcome frequencies 

In general, from these experiments, it has been concluded that Random Forest not only performs 
exceptionally well on classification tasks with a high accuracy of 98.01% with a high rate of recall of 
97.99% but also provides properly calibrated probabilities. 
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C. Model Interpretability and Explainability 
i. Feature Importance Analysis 

A worldwide analysis for which variables are most essential in heart disease predictions is 
presented in Figure 10. This is in terms of the meaning of absolute SHAP values. These values represent 
the magnitude the variables influence the output. They also show the strength or direction the variables 
tend towards the output. These variables show ChestPainType as the most essential variable in heart 
disease predictions. ChestPainType affects the heart disease predictions by about 1.45 in mean absolute 
SHAP values. This is followed by Cholesterol and Oldpeak variables. These have core importance values 
of about 0.75 and 0.68. This shows highly essential relationships between heart diseases and variables. 
Sex is also shown to have an impact on heart diseases. This is through a mean absolute value of about 
0.65. MaxHR and Slope also have variable impacts. These impacts are through values of about 0.60 and 
0.50. This shows the impact heart diseases have on the heart during exercise. Other essential variables in 
heart diseases include Exang and Ca.  

 

Fig. 10. Feature importance ranking based on mean absolute SHAP values 

These have values of about 0.48–0.50. This shows the essential relationship these variables have 
in the heart. Variables lower in the ranks include Age, RestingBP, Thal, FBS, and finally, RestECG. These 
variables have impact values ranging from about 0.15–0.40. Based on the report, the Random Forest 
variable importance analysis reveals critical heart disease-related variables. This is in the context that the 
analysis is machine learning assertive and interpretable. 

ii. SHAP-Based Explanation Analysis 
 

A more general interpretation of the individual contributions to the prediction of heart disease is 
presented in Figure 11 using a SHAP summary plot. First, overall information is provided, as well as 
detailed information about the contributions that the Random Forest classifier is making to its predictions. 
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Features are ordered according to their average absolute SHAP value. Such information provides insight 
into the impact that the individual attributes are having on the classifier’s decision. 

 
Fig. 11: SHAP summary plot showing the relative importance and directional impact of clinical 

features 

ChestPainType has the strongest influence, with an SHAP value range of approximately -3.0 to 
+2.5, which strongly indicates its influence. Cholesterol and Oldpeak demonstrate significant influence, 
with higher values tending to have stronger positive influences, inferred from increased SHAP values. The 
Sex attribute demonstrates an appreciable grouping pattern, which strongly indicates the influence of 
genders in determining risk. MaxHR and Slope have negative influences with opposite trends, with 
reduced values indicating an increase in risk, inferred from negative SHAP values. Other variables such 
as Exang, Ca, and Age display moderate influences, strongly indicating their importance in cardiovascular 
risk evaluation. Less significant variables RestingBP, Thal, FBS, and RestECG display relatively smaller 
ranges in their SHAP values, which strongly demonstrate their importance. The color gradient represents 
the strength of the feature values; therefore, the trends from the high values towards the lower values and 
the associated impact in the predictions can be easily understood from the color gradient. Thus, the 
combined effect of the SHAP analysis increases the interpretability of the results and solidifies the fact 
that the Random Forest is using significant attributes in the model. 

V.  CONCLUSION AND FUTURE WORK 

 This research makes it clear that machine learning combined with a thoughtful, interpretable 
analysis process can enable the reliable prediction of customized risk for heart disease. Instead of narrowly 
pursuing high accuracy, the framework integrates preprocessing, robust classification, probabilistic 
verification, and explainable analysis. When it comes to machine learning model comparison, Random 
Forest emerged as the best performer, achieving 98.01% accuracy. Overall, generalization, and proper 
probabilistic calibration. Furthermore, incorporating learning curves, model calibration analysis, or SHAP 
explanations provides a holistic understanding of the model’s performance. The recognition of clinical 
factors, such as the presence or absence of chest pain, cholesterol, or exercise-induced risk, further 
reinforces its importance. Overall, the empirical evidence indicates that the new approach presented here 
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serves as a feasible, explainable, and efficient tool that connects machine learning performance with 
clinical practice effectively. 

 While the framework already shows both strong predictive power and clear interpretability, there 
are some promising directions for enhancement. Such work could extend the system to work with 
longitudinal and real-time patient data, thus making the risk monitoring continuous rather than a one-off 
forecast. The inclusion of diverse clinical inputs, such as wearable sensor streams and electronic health 
records, would arguably allow for more tailored personalization. Testing of the framework on larger, 
multi-institutional datasets for higher generalizability and clinical resilience is warranted. In terms of 
implementation, embedding this model into a secure clinician-facing decision-support platform can 
promote real-world use without sacrificing transparency and data privacy. These steps would nudge the 
system closer to practical clinical integration and scalable cardiovascular risk management. 
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