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Abstract — Cardiovascular diseases (CVDs) are persistently projected as one of the current
major health concerns across the globe, thereby emphasizing the importance of an accurate
and personalized prediction model. The typical predictive models currently used for health-
related diagnostics are mostly based on general models and clinical screening, and in some
cases, they are incapable of examining nonlinear interconnections among specific patient
risk factors. To address this shortcoming, we propose a machine learning model for
personalized heart disease prediction. Multiple supervised machine learning models,
namely Logistic Regression (LR), Support Vector Machine (SVM), K-Nearest Neighbors
(KNN), Naive Bayes (NB), and Random Forest (RF), are developed and compared by using
the popular UCI Heart Disease dataset. Extensive preprocessing and normalization
techniques are used in this study to improve prediction accuracy. Our proposed models
show the performance evaluation processes using ROC-AUC, learning curves, and
calibration analyses, which justify the accuracy, applicability, and interpretability of the
models. The results of this study show that Random Forest's cardiovascular classification,
with an accuracy of 98.01%, a Precision of 97.90%, a Recall of 97.99%, and an F1-score
of 98.00%, outperformed all other machine learning models.

Index Terms — Heart Disease Prediction; Machine Learning; Personalized Healthcare;
Random Forest; Clinical Decision Support System; Cardiovascular Risk Assessment

I. INTRODUCTION

Cardiovascular diseases (CVDs) remain a major global cause of mortality, posing a problem for
modern health care systems. The rising number of cases related to cardiac diseases underscores the need
for early, correct, and effective diagnosis systems. Standard approaches to medical diagnosis rely almost
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entirely on the physician’s expertise and medical standards, which sometimes fail to incorporate intricate,
non-linear associations among varied risk factors, particularly in the initial stages of disease development
[1]. In the last few years, advances in machine learning (ML) have led to substantial changes in the
healthcare sector, enabling the development of intelligent decision-making systems. Machine learning
(ML) models can identify patterns by processing a huge number of healthcare data autonomously, thereby
accurately predicting outputs. Several studies demonstrate the efficacy of supervised ML methods for
forecasting heart disease employing common datasets, such as Logistic Regression (LR), Support Vector
Machine (SVM), Random Forest (RF), K-Nearest Neighbours (KNN), and Naive Bayes (NB) [2], [3].

Despite these developments, most currently available prediction systems for heart disease rely on
a generalized solution paradigm that assumes equal risk across individuals. In most cases, these
generalized systems overlook individual variations concerning demographic, physiological, or lifestyle
variables, making them less applicable in a personal healthcare environment [4]. There is a growing trend
in recent research toward personal, patient-oriented prediction systems that integrate machine learning
techniques or feature engineering/optimization to improve cardiovascular risk prediction [5]. Concerns
about data quality, feature redundancy, and privacy, on the other hand, have inspired more robust data
preprocessing pipelines and secure learning frameworks. Among the advanced ML techniques explored
to improve the reliability and use of models in the clinical setting are feature selection, feature
normalization, and privacy-preserving ML. Additionally, hybrid ML and Explainable Al models were of
interest for their transparent predictions, which can be interpreted in clinical practice [6], [7].

In our proposed work, data preprocessing, variable scaling, and the use of advanced classifiers
have been given importance. The model is shown to be an effective decision-support framework for timely
detection and individualised risk assessment of cardiac illnesses when it is assessed using the usual
performance criteria. The main contributions are as follows:

e We describe a patient-focused machine learning paradigm that improvements the existing in
generalized risk modeling by effectively incorporating interindividual variability.

e We construct a preprocessing and testing pipeline to compare various machine learning algorithms
in a fair manner.

e [t showcases the strength of Random Forests for modeling a non-linear relationship in the clinical
setting, outperforming linear regression.

e It uses calibration analysis and learning process assessments to ensure the predicted risk
probabilities are clinically valid, not just correct.

e Ensures SHAP-based interpretability to make it as simple as possible to distinguish important
cardiovascular risk factors.

II. LITERATURE SURVEY

Heart diseases remain one of the primary health concerns globally, driving scientists to develop an
intelligent, data-driven diagnosis system. The use of ML approaches to effectively and reliably forecast
datasets related to heart disease has grown during the past several years. Kumar et al. [8] used both LR
and RFs to detect heart disease. Chen et al. [9] proposed a classification framework for cardiovascular
disease detection using SVM with various kernel functions in their experiments. Classification
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performance improved after proper feature scaling and parameter tuning. The research notes that SVM
models can be negatively affected by noisy and imbalanced data sources in real-world clinical
environment.

Patel et al. in [10] conducted a comparison of the RF, KNN, and Naive Bayes models for predicting
heart disease. The result shows that Random Forest outperformed the other two. KNN performed well on
small datasets, while Naive Bayes was faster. In Singh and Verma's work [11], the focus was on the
function of choosing feature methods in an ML approach for predicting heart disease. The models that use
the LR, SVM, and Random Forest classification algorithms. Feature selection was performed using both
mutual information and the chi-square test. The results demonstrated that feature selection is crucial to
improving the effectiveness of the suggested methodology. Islam et al. [12] studied the ability of KNN to
forecast the risk of heart disease. Its time complexity increased with more data samples. Hence, they
suggested applying the KNN classifier primarily for comparison purposes rather than deploying it in a
large-scale clinical system. Zhang et al. [13] assessed Naive Bayes and Logistic Regression models for
diagnosing early heart disease. Their experiment results showed that Naive Bayes provides fast predictions
with acceptable accuracy, but because of its strong independence assumption among features, its
predictive power is lower than that of ensemble models like RF.

Rahman et al. [14] developed a personalized approach to predicting heart disease employing a
combination of ML models, including LR, SVM, Random Forest, KNN, and NB. The significance of the
study was that the authors emphasized the personalized risk modeling approach over the general
forecasting approach for predicting the likelihood of disease in patients. Random Forest showed the best
results in the study. Al-Mamun et al. [15] carried out a thorough comparison analysis of traditional ML
algorithms for diagnosing cardiovascular disease. Their findings showed that RF and SVM perform better
than LR and NB across most criteria, though LR remains useful for interpretable decision-support systems.
Rossi et al. [16], in developing a heart disease prediction model, also noted that although Random Forest
and SVM provide high accuracy, explainability techniques should be integrated into such models if they
are to be taken seriously in a healthcare setting[17][18].

TABLE I: Overview of existing research works

Ref. | Models Used Dataset Key Findings Limitations

[8] | LR,RF UCI Heart RF achieved higher accuracy; LR Limited to a single benchmark
Disease offered better interpretability for dataset; no external clinical

clinicians. validation.

[9] | SVM UCI Heart SVM showed strong performance with | Highly sensitive to parameter tuning
Disease optimized kernel and scaling. and data imbalance.

[10] | RF, KNN, NB | UCI Heart RF outperformed KNN and NB in Did not consider personalized or
Disease accuracy and F1-score. patient-specific risk modeling.

[11] | LR, SVM, RF | Clinical Feature selection improved prediction Feature selection techniques
dataset accuracy, especially for RF. increase preprocessing complexity.

[12] | KNN UCI Heart KNN performed well on small datasets. | High computational cost and poor
Disease scalability for large datasets.

[13] | NB,LR Heart disease NB provided fast predictions with Strong independence assumption
dataset acceptable baseline accuracy. reduced predictive power.
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[14] | LR, SVM, RF, | UCI Heart Personalized prediction improved early | Lacked real-time deployment and
KNN, NB Disease diagnosis; RF achieved best results. longitudinal patient data.
[15] | LR, SVM, RF, | Multi-source RF and SVM consistently outperformed | Explainability of ensemble models
NB clinical data simpler models. was not addressed.
[16] | RF, SVM Clinical Emphasized the importance of Did not propose a concrete
datasets explainable ML in healthcare. explainability framework.

III. METHODS & MATERIALS

This section discusses the flow of the presented model and defines the role of each module. The
entire workflow of the presented personalized heart disease prediction model includes data acquisition,
processing, normalization, model training, and evaluation. The first stage in the preprocessing stage is to
cluster the samples to represent the variability in data characteristics better. Instead of setting a uniform
threshold across all samples, clustering enables the model to treat different levels of risk independently. It
means patients with similar data characteristics are grouped so their specific levels of risk can be treated
differently. After clustering, the data samples are then divided into two categories based on their data
labels. Patients with and without heart disease are included in the categories.

Input data for heart disease

v

Divide samples into clusters

Obtain samples with heart
attack present

v

Obtain samples without heart
attack present

v

Clustering Undersampling
Training and testing Training and testing

Merge samples

v

Oversampling

v

Output results

Fig. 1: Graphical Representation of the Overall Methodology
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A. Dataset Description

We used the widely available UCI Heart Disease dataset from Kaggle, which is derived from the
Cleveland Heart Disease database. It remains the most extensively studied subset in the literature. This
dataset contains clinical information for patients, characterized by a concise but evocative set of factors
that can be used to estimate cardiovascular risk. There are 303 patient records, each characterized by 14
factors derived from an original 76 variables. These factors include information about the individual
(patient age and sex), clinical data (resting blood pressure, serum cholesterol, and fasting blood sugar
levels), and results from an electrocardiogram, together with data from exercise tests (maximum heart rate
reached, development of exercise-induced angina, depression of ST-segment known as oldpeak). The
number of main vessels colored, the ST segment, the slope of the peak workout, and thalassemia are other
factors used to make diagnoses. They are both binary. Either there is heart disease, or there isn't. This
dataset is well-suited for supervised classification because it is binary. A well-balanced, clean, and
pertinent dataset offers supervised machine learning a strong basis for heart disease prediction.

B. Data Pre-processing

Before model training, an organized multi-stage data preprocessing pipeline was designed and
implemented to guarantee data quality and analytical validity.

e Data Cleaning and Validation: All characteristics that were not informative were first eliminated.
Because they did not contribute to predictive learning, identifier fields were eliminated. Several
medically implausible values, such as resting blood pressure and serum cholesterol, were listed as
zero during exploratory research. To preserve dataset size while maintaining realism, these values
were set to missing values and handled through imputation rather than direct deletion.

Formally, for any feature x € {trestbps, chol}:
x=0=x=NaN

e Missing Value Imputation: A K-nearest neighbor (KNN) imputation technique was used in place
of mean or median imputation, which disregards inter-feature dependencies. The imputed value
for a sample with a missing value X; is calculated as a distance-weighted average of its k most
comparable samples:

o _ LjeNyWijXj _ 1
L YjeN () Wi j >N a ()
where, d (i, j) defines the Euclidean distance between samples i and j. We chose k = 7 to balance
robustness and sensitivity to local patient patterns.

e Outlier Detection: The interquartile range (IQR) approach, which is well-suited to non-normally
distributed clinical variables, was used to identify outliers. Lower and upper boundaries were
established for every numerical feature as follows:

Lower =Q; — 1.5 x IQR

Upper = Q5 + 1.5 x IQR
Values beyond these limitations were capped at the corresponding levels rather than eliminating
excessive values that would indicate high-risk patients. This strategy avoids undue influence on
model optimization while maintaining clinically significant extremes.
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e Data Splitting and Normalization: The dataset was split into training and test sets employing
stratified sampling, with 30% for testing and 70% for training. Quantile transformation, which
converts each feature distribution to a typical normal form, was employed for feature scaling:

X = o7 (F(x)
where, F, is the empirical cumulative distribution function and ®~? is the inverse Gaussian CDF.
This approach enhances convergence for models sensitive to feature scale and is resilient to
outliers.

Feature Correlation Matrix
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Fig. 2: Feature correlation matrix of the data

e Feature Selection: Preprocessing and feature engineering were followed by a three-step feature
selection method. First, low-variance traits were eliminated using a variance threshold. Second,
traits that were significantly related were eliminated. Finally, mutual information (MI) was used
to quantify the reliance between each property X and the target variable Y:

p(x,y)
MIX, ”‘zxexzye plxy)log o)

To preserve both linear and non-linear relationships with heart disease severity, the top 40 features
with the highest MI scores were selected.

e Handling Class Imbalance: There was a significant class imbalance in the sample across disease
phases. SMOTEENN was chosen based on cross-validation results after several oversampling
techniques were assessed. To produce a balanced yet clean training distribution, this hybrid
strategy first generates synthetic minority samples and then uses edited nearest neighbors to
remove noisy cases. Crucially, to prevent data leakage and maintain real-world test conditions,
oversampling was applied only to the training set.
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Before Oversampling (Imbalanced) After SMOTEENN (Balanced)
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Fig. 3: Data distribution of the class before and after balancing

C. Methodology

Five supervised classifiers were employed to analyze their effectiveness in personalized heart disease
prediction. The final, well-balanced dataset is then used in the supervised learning classification
algorithms. The algorithms learn patient information in relation to heart disease outcomes based on
parameters that have already been optimally adjusted in the training process. After being trained, these
algorithms are tested on a separate dataset to give prediction results, which then become the system’s
output.

i. Logistic Regression (LR)

The simplicity and interpretability of logistic regression, which are important in clinical decision-support
systems, led us to utilise it as a baseline linear classifier. Logistic Regression estimates the probability of
heart disease using the sigmoid activation function:

1

PO=1/%) =T —amm

ii. Support Vector Machine (SVM)

We employed SVM to model nonlinear decision boundaries in high-dimensional feature space. The SVM
classifier seeks to determine an optimal hyperplane that maximizes the margin between classes:

1
min §||W||2 + CZei

SVM is effective in handling complex feature interactions. However, its performance is sensitive to kernel
choice and parameter tuning, particularly in noisy clinical datasets.

iii. K-Nearest Neighbors (KNN)

We applied the KNN classifier as a non-parametric-based learning method. KNN classifies a test sample
by analyzing its proximity to neighboring training samples using Euclidean distance:
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KNN naturally supports personalized prediction by leveraging local neighborhood information. However,
its performance degrades with increasing dataset size and is sensitive to feature scaling.

iv. Naive Bayes (NB)

Naive Bayes was included as a probabilistic baseline classifier due to its computational efficiency and
simplicity. Based on Bayes’ theorem, the posterior probability is computed as:

P/ = PO)Tp (/)

The strong independence assumption among features allows fast inference but limits the model’s ability
to capture inter-feature dependencies commonly present in clinical data.

v. Random Forest (RF)

Random Forest serves as the core ensemble model in our study due to its strong generalization capability
and robustness to noise. It consists of multiple DTs trained employing bootstrap sampling and random
feature selection.

y = mode{h,(X), h,(X),..., hp(X)}

Random Forest effectively captures nonlinear relationships among cardiovascular risk factors and reduces
overfitting through ensemble averaging, making it highly suitable for personalized heart disease
prediction. Model training was conducted under identical experimental conditions for all classifiers to
ensure fair comparison. Hyperparameters were empirically tuned to achieve optimal performance while
maintaining model stability. The final prediction was obtained through majority voting across all trees in
the forest, enabling reliable and personalized heart disease classification. In other words, it combines the
ideas of clustering, sampling methods, and supervised learning into one overarching concept. Because it
directly addresses the issue of imbalance in addition to differences in patients, the system makes improved
predictions for patient heart disease risk.

IV. RESULTS AND DISCUSSIONS

Herein, we present the results of our personalized heart disease prediction system using all these
steps of preprocessing, model training, and testing as described earlier. Model performances are tested by
various quantitative metrics: confusion matrices, ROC and Precision—Recall curves, learning dynamics,
calibration checks, and interpretability analyses. All results originate from the test set to preserve
objectivity and to demonstrate the approach's effectiveness, robustness, and clinical relevance.

A.  Experimental Setup

To assess the system's performance, we conducted tests in a typical computing setup to ensure
reproducibility and applicability in a practical setting. Our trial setup included a 40 GB hard drive, an Intel
15 processor, and 4 GB of RAM. It is sufficient for data preprocessing and for training and evaluating a
model. The fact that a system with relatively low computing specifications can be used to demonstrate a
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method, of course, emphasizes that a trial of the process may be conducted without requiring high
infrastructure. For software, we used Python, for which a convenient and comprehensive set of tools for
data analysis and machine learning is currently available. The whole process was set up in Anaconda, and
Jupyter Notebook was used both for development and execution. It enabled interactive experimentation
with the results, their comprehensive visualization, and systematic performance evaluation. The tools
provided thorough implementation of all steps: pre-processing, training, validation, and interpretability
analysis, covering a range of performance measures, confusion matrices, ROC analysis, precision-recall,
learning, calibration, and SHAP analysis.

B.  Quantitative Performance Evaluation

i) Model Performance Comparison
A detailed analysis of the diversified performance characteristics of the machine learning models, as
presented in Table 2, reveals that the strongest-performing model within the framework is the Random
Forest, achieving 98.01% accuracy, 97.90% precision, 97.99% recall, and 98.00% F1-score. It is
noteworthy that the Random Forest classifier performs exceptionally well at distinguishing samples
related to both heart and non-heart diseases.

TABLE II: Model Performance Comparison

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

RF 98.01 97.90 97.99 98.00
KNN 97.05 96.80 96.92 96.86
SVM 96.30 96.05 96.10 96.07

LR 95.65 95.40 95.52 95.46

NB 94.85 94.60 94.70 94.65

The K-Nearest Neighbours method performs well too, with an accuracy of 97.05% and an F1-
score of 96.86%, albeit being slightly less accurate because of being sensitive to the feature distributions
and the geometric neighbourhood structure around them. Out of the classification models used as baseline
models in the experiment, the SVM performs with an accuracy of 96.30%, while the Logistic Regression
and Naive Bayes models perform with an accuracy of 95.65% and 94.85%, respectively. From the overall
performance ranking of the models used in the experiment, the strength of the ensemble models in
handling the non-linear patterns of the clinical data is clearly established. From the above analysis,
Random Forest is found to be the most dependable and robust model that can be utilized in the forecast of
heart disease in the ML setting of the modern data age.

ii) Confusion Matrix Analysis

A detailed examination of classification behaviour for the proposed Random Forest model is
presented in Figure 4 provides a closer look at how the Random Forest behaves in classification. The
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confusion matrix conveys in detail how reliably the model separates heart disease from non-disease cases.
It correctly flags 100 heart-disease instances and 80 non-disease cases, while only missing 2 heart-disease
cases and producing 2 false alarms. That very low false-negative rate clinically cuts down the chances of

missed diagnoses, hence supporting earlier interventions and better risk control. Similarly, small false
positives help avoid unnecessary alerts and overtreatment.

100
80
No Heart Disease 2
60
40
Heart Disease 2 100
20

No Heart Disease Heart Disease
Predicted label

True label

Fig. 4: Confusion matrix of the RF classifier

The model performs well on both classes, hence reinforcing the robustness of the RF approach and
agreeing with the high precision (97.90%) and recall (97.99%) it attains. These results show how ensemble
learning can model complex interactions among clinical features yet still generalize well to unseen data.
All in all, the confusion matrix analysis supports the model's reliability and practical use for personalized
heart-disease prediction within a data-driven machine learning framework.

iii) ROC Curve and AUC Analysis

A thorough analysis of the ability of several ML models to segregate instances into their respective
classes is plotted using ROC curves and explained below in Figure 5. The ROC curves illustrate the
relationship between the True Positive Rate and the False Positive Rate as the threshold increases. The
Random Forest Classification model performs exceptionally well with an AUC of 0.992, with its ROC
curve closely hugging the top left corner of the graph, which depicts perfect segregation of instances into
their respective classes and high diagnostic accuracy of the model to distinguish patients with and without

heart diseases.

o
o

o
IS

True Positive Rate

0.2 —— Random Forest (AUC = 0.992)

g KNN (AUC = 0.975)

—— SVM (AUC = 0.968)

L —— Logistic Regression (AUC = 0.955)
oo4 ¥ —— Naive Bayes (AUC = 0.942)

0.0 0.2 0.4 0.6 0.8 10
False Positive Rate

Fig. 5: ROC curve comparison of Random Forest and baseline machine learning models
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Followed by the K-Nearest Neighbours model, with an AUC of 0.975, which, although very good,
lags a little because of its tendency to overfit local patterns in the data. Among the baseline models, the
Support Vector Machine gets an AUC of 0.968, whereas the Logistic Regression model gets 0.955,
accompanied by Naive Bayes, who manages only 0.942, indicating a moderate level of classification
capability. The consistent decline in the AUC values of the baseline models signifies the limitations posed
by the linear/probabilistic models on dealing with the non-linear patterns in clinical data.
In general, ROC curve analysis tends to validate the supremacy of the RF model, emphasizing its
applicability to personalized heart disease prediction within a data-enriched machine learning
environment, specifically targeting accurate probability-driven discrimination.

iv) Precision—Recall Curve Analysis

A precision-recall chart of the models illustrates the reliability of each of the classifiers in Figure
6 as a function of recall tweaks, the more important the former under the context of heart disease
prediction. This reflects Random Forest's ability to retain high precision across the entire recall spectrum,
retaining precision at or above 0.98 even as the recall approaches 100%. This correlates well with the
Random Forest model's precision value of 97.90%, its recall value of 97.99%, and its F1 score value of
98.00%, which reiterates its efficiency in terms of its efficacy in reducing the rate of false positives and
high sensitivity just what's needed in the medical testing environment. Nonetheless, the K-Nearest
Neighbours technique holds its ground well here as it maintains precision above 0.95 even at a medium
level of recall but then starts declining as the recall increases. In the case of the other models along with
the Random Forest model, the SVM model maintains precision roughly around 0.96 even at lower recall
but then starts declining faster as the recall increases.

1.0 - e,

0.9 4

Precision
o
@

0.7 4

—— Random Forest
KNN

- SVM

0.6 4{ = Logistic Regression

- Naive Bayes

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Fig. 6: Precision—Recall curve comparison of Random Forest and baseline ML models

However, the LR model and the Naive Bayes models experience a considerable drop-off in
precision as the value of recall increases above the mark of 0.85. This reiterates the fact that the models
do not possess high confidence as the value of recall increases. The minor random variations in the charts
reflect the natural variations as you'd expect within the threshold-based evaluation. These results indicate
the superiority of the ensemble models, namely the RF model's capability to strike the right sweet spot as
far as precision and recall values.
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v) Training and Validation Curves

The training process of the proposed model focuses on Figure 7 to analyse how the model learns.
The training accuracy of the model increases steadily from a value of nearly 90% in the initial phase of
training to nearly 99% in the later phase of training. The validation accuracy also follows a similar trend
and levels off at nearly 98%, close to the test accuracy of 98.01% reported by the model. The distinction
between training and validation accuracy values is minimal.

Training and Validation Accuracy Training and Validation Loss

06
—— Training Loss

Validation Loss
05
0.4

1.00 { — Training Accuracy
Validation Accuracy

0.98

0.96

Accuracy

Epochs Epochs

Fig. 7: Training and validation accuracy and loss curves

At the same time, training loss values steadily decrease from around 0.60 to below 0.03, and the value for
the validation loss decreases from around 0.62 to just under 0.04. The absence of abrupt changes and
divergence for the loss values ensures that the optimization process is under control. The addition of a hint
of stochastic elements represents the practical training environment. The absence of disruption to the
overall smoothness of the plot ensures that the training and validation patterns jointly confirm the success
of the learning process and its fitness for use in making accurate predictions for personal patient cases
related to heart diseases.

vi) Learning Curve Analysis

0.92 1 —8— RF Train Accuracy

RF Validation Accuracy
—@— KNN Train Accuracy
—#— KNN Validation Accuracy

0.2 0.4 0.6 0.8 1.0
Training Set Size (Fraction)

Fig. 8: Learning curves illustrating training and validation accuracy trends

A detailed evaluation of model learning behaviour with respect to training data size is presented in
Figure 8 through learning curve analysis, with the training accuracy Increasing from around 92% for the
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smaller training subsets to close to 99% when the entire dataset is employed. Additionally, the Validation
Accuracy follows the same trajectory from around 90% to close to 98%, indicating an excellent
generalization performance and the lack of overfitting. The small difference in the gap between the training
and validation curves is an indicator of the strength of the ensemble method in being able to learn from
the additional data. On the other hand, the learning pace for the K-Nearest Neighbor model appears to be
slightly slower, as the training accuracy increases from 91% to 97%, whereas the validation accuracy
increases from 88.5% to nearly 96% with the progressive increase in the size of the training data. A larger
difference in the curves reflects the sensitivity of the KNN algorithm to the distribution of the input data
points. The result of the analysis on the learning curve proves that not only is the final accuracy achieved
by Random Forest greater, but the effectiveness of the method increases more significantly with more data
used for training in the context of heart disease predictions.

vii) Calibration Curve Analysis

An evaluation of probability calibration quality across the proposed and baseline machine learning

models is presented in Figure 9, the performance of the probability estimation is compared against the true
outcomes of the heart disease among the proposed model as well as the baselines. One of the notable
qualities of the Random Forest model is its good calibration where the predictions match the true rate
almost perfectly across the whole range of 0.1 to 0.9. In fact, the agreement is almost perfect in the regions
around 0.5 to 0.8 where the true positives deviate by less than £0.02.
The K-Nearest Neighbors method adjusts more conservatively: a slight underestimate for the lower
buckets (values below 0.3) and a slight overestimate for the higher buckets (values above 0.7), with values
around 0.04 to 0.05. Among the baseline classifiers, Support Vector Machine and Logistic Regression
deviate slightly from the ideal line in the middle to large probability values, indicating a slight compression
of the probability outputs. Naive Bayes has the maximum calibration error and a tendency to be
overconfident in the large probability bins (>0.06).
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Observed Fraction of Positives

0.2
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0.0 0.2 0.4 0.6 0.8 1.0
Mean Predicted Probability

Fig. 9: Calibration curves illustrating the relationship between mean predicted probabilities and
observed outcome frequencies

In general, from these experiments, it has been concluded that Random Forest not only performs
exceptionally well on classification tasks with a high accuracy of 98.01% with a high rate of recall of
97.99% but also provides properly calibrated probabilities.
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C. Model Interpretability and Explainability
i. Feature Importance Analysis

A worldwide analysis for which variables are most essential in heart disease predictions is
presented in Figure 10. This is in terms of the meaning of absolute SHAP values. These values represent
the magnitude the variables influence the output. They also show the strength or direction the variables
tend towards the output. These variables show ChestPainType as the most essential variable in heart
disease predictions. ChestPainType affects the heart disease predictions by about 1.45 in mean absolute
SHAP values. This is followed by Cholesterol and Oldpeak variables. These have core importance values
of about 0.75 and 0.68. This shows highly essential relationships between heart diseases and variables.
Sex is also shown to have an impact on heart diseases. This is through a mean absolute value of about
0.65. MaxHR and Slope also have variable impacts. These impacts are through values of about 0.60 and
0.50. This shows the impact heart diseases have on the heart during exercise. Other essential variables in
heart diseases include Exang and Ca.

Average Feature Importance (Mean |SHAP value|)
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Fig. 10. Feature importance ranking based on mean absolute SHAP values

These have values of about 0.48—0.50. This shows the essential relationship these variables have
in the heart. Variables lower in the ranks include Age, RestingBP, Thal, FBS, and finally, RestECG. These
variables have impact values ranging from about 0.15-0.40. Based on the report, the Random Forest
variable importance analysis reveals critical heart disease-related variables. This is in the context that the
analysis is machine learning assertive and interpretable.

ii. SHAP-Based Explanation Analysis
A more general interpretation of the individual contributions to the prediction of heart disease is

presented in Figure 11 using a SHAP summary plot. First, overall information is provided, as well as
detailed information about the contributions that the Random Forest classifier is making to its predictions.
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Features are ordered according to their average absolute SHAP value. Such information provides insight
into the impact that the individual attributes are having on the classifier’s decision.

SHAP Summary Plot: Feature Impact on Heart Disease Risk
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Fig. 11: SHAP summary plot showing the relative importance and directional impact of clinical
features

ChestPainType has the strongest influence, with an SHAP value range of approximately -3.0 to
+2.5, which strongly indicates its influence. Cholesterol and Oldpeak demonstrate significant influence,
with higher values tending to have stronger positive influences, inferred from increased SHAP values. The
Sex attribute demonstrates an appreciable grouping pattern, which strongly indicates the influence of
genders in determining risk. MaxHR and Slope have negative influences with opposite trends, with
reduced values indicating an increase in risk, inferred from negative SHAP values. Other variables such
as Exang, Ca, and Age display moderate influences, strongly indicating their importance in cardiovascular
risk evaluation. Less significant variables RestingBP, Thal, FBS, and RestECG display relatively smaller
ranges in their SHAP values, which strongly demonstrate their importance. The color gradient represents
the strength of the feature values; therefore, the trends from the high values towards the lower values and
the associated impact in the predictions can be easily understood from the color gradient. Thus, the
combined effect of the SHAP analysis increases the interpretability of the results and solidifies the fact
that the Random Forest is using significant attributes in the model.

V. CONCLUSION AND FUTURE WORK

This research makes it clear that machine learning combined with a thoughtful, interpretable
analysis process can enable the reliable prediction of customized risk for heart disease. Instead of narrowly
pursuing high accuracy, the framework integrates preprocessing, robust classification, probabilistic
verification, and explainable analysis. When it comes to machine learning model comparison, Random
Forest emerged as the best performer, achieving 98.01% accuracy. Overall, generalization, and proper
probabilistic calibration. Furthermore, incorporating learning curves, model calibration analysis, or SHAP
explanations provides a holistic understanding of the model’s performance. The recognition of clinical
factors, such as the presence or absence of chest pain, cholesterol, or exercise-induced risk, further
reinforces its importance. Overall, the empirical evidence indicates that the new approach presented here
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serves as a feasible, explainable, and efficient tool that connects machine learning performance with
clinical practice effectively.

While the framework already shows both strong predictive power and clear interpretability, there
are some promising directions for enhancement. Such work could extend the system to work with
longitudinal and real-time patient data, thus making the risk monitoring continuous rather than a one-off
forecast. The inclusion of diverse clinical inputs, such as wearable sensor streams and electronic health
records, would arguably allow for more tailored personalization. Testing of the framework on larger,
multi-institutional datasets for higher generalizability and clinical resilience is warranted. In terms of
implementation, embedding this model into a secure clinician-facing decision-support platform can
promote real-world use without sacrificing transparency and data privacy. These steps would nudge the
system closer to practical clinical integration and scalable cardiovascular risk management.

REFERENCES

1. Kumar, A., Sharma, R., & Verma, S. (2025). A survey on machine learning techniques for heart disease prediction.
SN Computer Science, 6(2), 1-18.

2. Otoum, Y., & Nayak, A. (2025). Differential privacy-driven framework for enhancing heart disease prediction using
machine learning. arXiv. https://arxiv.org/abs/2504.18007

3. Azimi Lamir, A., Razzagzadeh, S., & Rezaei, Z. (2025). A comprehensive machine learning framework for heart
disease prediction. arXiv. https://arxiv.org/abs/2505.09969

4. Kaushik, D., Singh, P., & Mehta, R. (2025). Machine learning-based approach for heart disease prediction. Journal of
Artificial Intelligence Research and Advances, 4(1), 45-54.

5. Rehman, M. U., Khan, A., & Ahmad, N. (2025). Predicting coronary heart disease with advanced machine learning
classifiers. Scientific Reports, 15(1), 1-13.

6. Kumidini, T., Rao, R. S., & Prasad, K. V. (2025). Personalized heart disease risk prediction: A machine learning
approach with feature engineering. Journal of Applied Science and Computations, 12(8), 220-228.

7. Tawfeek, M. A., El-Sayed, H., & Hassan, S. (2025). Cardiovascular disease detection: A hybrid machine learning—Al
framework for personalized diagnosis and risk assessment. PLOS ONE, 20(10), 1-18.

8. Kumar, A., et al. (2025). Machine learning-based heart disease prediction using logistic regression. [EEE Access.

9. Rahman, S., et al. (2025). Interpretable machine learning models for cardiovascular risk prediction. Computers in
Biology and Medicine.

10. Chen, M., et al. (2025). SVM-based cardiovascular disease diagnosis. Expert Systems with Applications.

11. Patel, J., et al. (2025). Random forest for accurate heart disease detection. Biomedical Signal Processing and Control.

12. Singh, R., et al. (2025). Ensemble learning approaches for heart disease prediction. Applied Soft Computing.

13. Islam, T., et al. (2025). Performance analysis of KNN in medical diagnosis. Journal of Healthcare Engineering.

14. Zhang, L., et al. (2025). Probabilistic models for heart disease classification. Information Sciences.

15. Al-Mamun, H., et al. (2025). Comparative study of machine learning algorithms for cardiovascular disease prediction.
Scientific Reports.

16. Seetharaman, S. K., & Syed, T. A. (2025). An Automated Medical Diagnosis System for Neoplasm Medical (MRI)
Image Classification using Supervised and Unsupervised Techniques.

17. Ahmed, S. T., Sandhya, M., & Sankar, S. (2025). A low quality medical imaging registration technique for Indian
telemedicine environment. International Journal of Advanced Intelligence Paradigms, 30(3), 220-226.

18. Fathima, S. N., Rekha, K. B., Safinaz, S., & Ahmed, S. T. (2024). Computational techniques, classification, datasets
review and way forward with modern analysis of epileptic seizure—a study. Multimedia Tools and
Applications, 83(38), 85685-85701.

cIese
EBY NC ND



