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Abstract – Numerous medical disorders, including diabetes, heart disease, and 
hypertension, are significantly influenced by stress. Physiological markers for real-time 
stress detection are becoming more popular as wearable health monitoring devices are 
widely used. This research uses the WESAD (Wearable Stress and Affect Detection) 
dataset, which contains multimodal physiological data, including ECG, EDA, EMG, 
respiration, and temperature, to predict stress levels. We apply four machine learning 
classifiers to this dataset, focusing on addressing the class imbalance using the Synthetic 
Minority Oversampling Technique (SMOTE). The outcomes illustrate that Decision Trees 
outperform other classifiers with an accuracy of 96.27%.  For future work, efforts can be 
directed towards incorporating additional modalities, such as EEG and eye-tracking data, 
to improve stress detection accuracy further. Longitudinal data collection could also help 
understand stress over comprehensive periods, providing insights into chronic stress 
patterns.  

 
Index Terms – Stress Detection, WESAD Dataset, Machine Learning, Synthetic Minority 
Oversampling Technique (SMOTE), Wearable Health Monitoring, Health Monitoring 
Systems 
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I. INTRODUCTION  

 

Stress is widespread and can be described as the body's response to challenging or demanding 
circumstances (Chu, 2024). Long-term or chronic stress can negatively influence people's cognitive and 
physical health, even though stress is a normal and adaptive response meant to assist people in overcoming 
risks or challenges (Vetrivel, 2024). According to the American Psychological Association (APA), stress 
is a normal response to the demands of daily living (Zayas, 2024). The WHO reported that 970 million 
people suffered from mental health problems in 2019. The Comprehensive Mental Health Action Plan 
2013–2030 desires to incorporate mental health into primary care in 80% of countries by 2030 and expand 
service coverage by 50%.  However, when it becomes extreme, it can cause anxiety, mental stress, and a 
host of physical symptoms that can disrupt day-to-day functioning (Ahmed, 2024). The significance of 
efficient stress detection and management is highlighted by the relation between chronic stress and several 
health problems, including heart disease, depression, and compromised immunological function (Pokhrel). 
Traditional approaches to stress assessment usually depend on self-report questionnaires and clinical 
evaluations, which have limitations (Liu, 2024). Self-reported data may be impacted by personal mood at 
the time of reporting, and clinical assessments usually occur infrequently, presenting only snapshots of an 
individual's stress levels (Babayit, 2024). Consequently, there is an increasing demand for objective, real-
time stress detection techniques. Wearable technology can continuously record physiological data 
representing stress responses, which has brought promising developments in this field  (Bolpagni, 2024). 
Wearable sensors that measure skin temperature, heart rate variability (HRV), and electrodermal activity 
(EDA) relate to the body's stress reactions (Ardecani, 2024). The autonomic nerve system controls these 
physiological signals, which provide unbiased information about how people respond to stressful 
circumstances (Schmid, 2024).  

 
In the last few years, machine learning (ML) has evolved into a robust model for analyzing the 

physiological data collected by wearable devices (Xiao, 2024). ML algorithms can process enormous 
volumes of physiological data, extracting meaningful patterns and features that help to identify stress 
(Razavi, 2024). The Wearable Sensor and Affect Detection (WESAD) dataset (Benita, 2024), (Mazumdar) 
was developed for stress detection with physiological measurements from wearable devices. However, 
existing challenges include a class imbalance between stressed and unstressed data. Class imbalances must 
be handled to develop precise and widely applicable stress detection algorithms.  To overcome these, we 
employ the Synthetic Minority Over-sampling Technique (SMOTE) (Elreedy, 2024), (Kaddoura, 2024). 
SMOTE forms synthetic samples for the lower class, balancing the dataset and assisting the ML model to 
learn more from the stress-labeled data.  This study improves stress detection by integrating the WESAD 
dataset with considerable ML and SMOTE using the WESAD dataset based on physiological signals and 
ECG, EDA, and respiration. To deal with data imbalance, SMOTE and diverse ML classifiers are involved, 
which include Decision Tree (DT), XGBoost, Logistic Regression (LR), and Linear Discriminant Analysis 
(LDA). 

 
II. LITERATURE REVIEW 

 

(A machine-learning approach for stress detection using wearable sensors in free-living 
environments, 2024) et al. used the SWEET dataset included 240 people’s information and evaluated 



	

	 	 	

81	

several classifications, to provide an ML-based methodology. RF, KNN, SVC, DT, and XGBoost were 
used in this analysis. The results showed that RF performed better in binary classification without 
SMOTE, achieving an accuracy of 98.29% and an F1-score of 97.89%. XGBoost performed 
exceptionally well for three-class classification using SMOTE, obtaining a comparable F1 score and an 
accuracy of 98.98%. (Gedam, 2024) et al. developed stress detection by integrating wearable 
physiological sensors with DL models including RNN and LSTM classifiers, to analyze signals like skin 
temperature, GSR, and ECG. RFE helped LSTM reach a maximum accuracy of 97.51%, demonstrating 
its resilience in stress prediction.  (Geetha, 2024) et al. improved stress categorization utilizing the MLP 
model with sophisticated feature analysis to raise diagnostic precision. Compared to top ML algorithms 
like Adaboost, RF, and Gradient Boosting. Improved MLP model produced outstanding performance 
metrics, including 99% over a range of stress levels. (Bajpai, 2020) et al. assessed the KNN models 
employing the WESAD dataset, while (Di Martino, 2020) et al. presented ensemble learning with RNN 
models to boost stress detection accuracy. By applying the cross-validation, they evaluated the 
generalization ability for individual stress predictions. C.P.  (Hsieh, 2019) et al. focused on feature 
selection according to classifier relevancy and feature correlation, validating its classification 
effectiveness with XGBoost.  (Rashid, 2023) et al. offered the SELF-CARE method, which integrates 
sensor data fusion techniques to handle varied sensing conditions. Testing with wrist and chest sensors, 
their model achieved 86.34% and 86.19% accuracy in three-class classification and over 94% in two-
class scenarios. 

 
A comparison of six classifiers on the WESAD dataset by (Gupta, 2023) revealed the RF 

classifier’s superior accuracy, mainly when using chest-worn sensors, which performed better than wrist 
sensors with 97.15% and 95.54% accuracy, respectively. Lastly, (Ghosh, 2021) et al.  embarked on class 
imbalance through the ADASYN technique, also used a multi-class RF classifier on the WESAD dataset, 
performing an overall accuracy of 97.08%, representing a refined approach to stress classification 
utilizing both ECG and GSR signals. Benita et al. (Benita, Stress Detection Using CNN on the WESAD 
Dataset, 2024) presented various stress prediction approaches that influence binary and multiclass 
classification models, each incorporating physiological signals and different configurations to optimize 
model performance and utilizing a 5-second ECG signal sampled at 200Hz to reach optimal model 
accuracy. A novel scoring feature for stress levels was presented, varying from 0 (no stress) to 100 (high 
stress), adding a unique layer of granularity to stress analysis. With an accuracy of 95.04%, the model 
showed a high precision of 95.27% and a specificity of 99.44% in binary classifications.  (Shedage, 2024) 
et al. underscored the role of wearable devices in stress detection, explicitly examining the effectiveness 
of three physiological signals, EDA, ECG, and PPG, gathered via smartwatches employing six ML 
models, including SVM, KNN, and a stacking ensemble approach. They presented that EDA surpassed 
other signals and classification methods when integrated with the stacking ensemble method, 
underscoring EDA's value in real-time stress detection systems. (Quadrini, 2024) et al. presented 
STREDWES by encoding physiological signal fragments into images using CNN and analyzing image 
encoding methods. Evaluations on datasets like NEURO, SWELL, and WESAD demonstrated that 
STREDWES effectively captured stress markers, surpassing alternative approaches. 
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TABLE 1. An overview of current research on stress detection 
Ref Feature Selection Classifiers Accuracy 

(Abd Al-Alim, A machine-
learning approach for stress 

detection using wearable 
sensors in free-living 
environments, 2024) 

SMOTE KNN, SVC, DT, RF, XGBoost RF: 98.29% 

(Gedam, 2024) Recursive Feature 
Elimination (RFE) 

RNN, LSTM LSTM with RFE: 97.51% 

(Geetha, 2024) - Multilayer Perceptron (MLP) 99% 
(Bajpai, 2020) - KNN 90% 

(Di Martino, 2020) - Ensemble learners and RNNs - 
(Hsieh, 2019) RFE XGBoost F1-score: 92.38% 
(Rashid, 2023) - DT, RF, AdaBoost, LDA, 

KNN 
94.12% 

(Gupta, 2023) - RF chest-worn: 97.1% 
(Ghosh, 2021) ERT RF 97.08% 

(Karthick, 2022) - LSTM, DNN LSTM-86% DNN-82% 
 
III. METHODS AND MATERIALS 

 

The proposed methodology adopts a systematic approach for detecting stress, leveraging 
physiological signals alongside diverse machine learning classifiers to difference between stress and non-
stress states. Figure 1 graphically represents an overview of the methodology. 
 

 
 
 
 
 
 
 

 
Fig. 1: Graphical representation of overall research flow 

 
A. Dataset Description 

The WESAD dataset captures data from 15 individuals, including three female participants, 
exposed to various emotional and stress-inducing stimuli in a controlled laboratory environment. Every 
participant went through three main emotional states: 

• Baseline: involving a neutral reading task. 
• Amusement: where they viewed humorous video clips. 
• Stress: generated through the Trier Social Stress Test (TSST). 

The dataset comprises physiological and motion data collected from chest-worn and wrist-worn 
devices. Sensor modalities include EDA, ECG, BVP, EMG, respiration (RESP), TEMP, and a 3-axis 
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accelerometer (ACC). For our investigation, we combine the baseline states into a single non-stress 
category and contrast it with the stress state in a binary classification assignment. 

B.  Pre-processing and Feature Extraction 

Each physiological signal, excluding EMG data, was analyzed in 60-second windows for pre-
processing and feature extraction. Peak detection algorithms identified individual heartbeats within raw 
ECG and BVP signals, enabling heart rate (HR) calculation based on the intervals between successive 
peaks. Mean and standard deviation were derived from these HR values. Figure 2 displays the total number 
of the sample in each label. A 5 Hz lowpass filter was used to process the EDA signal, which reflects 
sympathetic nervous system activity and heightened arousal. The EDA signal was separated into the 
components of tonic and phasic. SCL indicated gradual baseline shifts, and SCR captured brief reactions 
to stimuli. EMG signals were processed through two pathways.  

 
First, a highpass filter removed the DC component, and the data was segmented into 5-second 

windows, from which statistical and frequency-domain features, including peak frequency, were extracted. 
Power spectral density (PSD) was also calculated across seven bands from 0 to 350 Hz. The second 
pathway applied a 50 Hz lowpass filter to the raw EMG signal, then segmentation into 60-second windows 
for extended analysis. For respiratory (RESP) signals, a bandpass filter (0.1–0.35 Hz) was used to retain 
only the relevant respiratory frequencies, followed by peak detection algorithms to identify minima and 
maxima. Min-max normalization was employed to ensure consistency across features. Given the dataset’s 
class imbalance, the SMOTE was applied to counteract bias towards the majority class, ensuring improved 
model performance on imbalanced data. 

 
Fig. 2: Total number of Samples in each Label 

C. Classification 

We leveraged four ML algorithms: Decision Tree, XGBoost, Logistic Regression, and LDA to 
classify individuals as stressed or unstressed. Table 2 highlights each model's performance on the WESAD 
dataset. For the Decision Tree model, an utmost depth of 5 was set, using entropy to gauge information 
gain at each split. XGBoost parameters included the highest tree intensity of 5, a learning rate 0.1, and 50 
estimators for stability accuracy with computational efficiency. The Logistic Regression model hired the 
Newton-cg solver, optimized with a 1,000-new release cap to ensure convergence. The LDA model 
utilized Singular Value Decomposition (SVD) because the solver successfully dealt with dimensionality 
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reduction. To provide proper evaluation, each model experienced 10-fold cross-validation to improve the 
reliability and generalizability of classification outcomes. 

TABLE 2. Performance of the individual classifier  
Classifiers Precision Recall F-score Accuracy 

DT  94.76% 98.62% 96.34% 96.27% 
XGBoost  85.83% 89.14% 87.16% 88.22% 
Logistic Regression  90.21% 92.36% 91.19% 91.36% 
LDA 70.77% 80.30% 71.71% 71.03% 

 
IV. RESULT AND DISCUSSION 

 

Numerous ML approaches are used to determine stress levels in the WESAD dataset, a well-liked 
basis for stress detection research. SMOTE was used in this study to balance the data, while classifiers 
such as DT, XGBoost, LR, and LDA were utilized to distinguish between stress and non-stress situations. 
The outcomes highlight each model's strsengths and weaknesses for essential performance metrics like F-
score, recall, accuracy, and precision.  DT emerged as the only classifier, accomplishing 94.76% precision, 
98.62% recall, 96.34% F-1, and 96.27% accuracy. The excessive bear in mind indicates DT excels at 
effectively figuring out strain conditions, making it specifically helpful in situations where minimizing 
fake negatives is vital, including fitness tracking structures. XGBoost has proven mild overall 
performance, attaining 85.83% precision, 89.14% recall, 87.16% F-score, and 88.22% accuracy. While 
XGBoost presents robustness and performance, its lower precision than DT reveals a better possibility of 
false positives, which impacts its applicability in strain detection responsibilities wherein precision is a 
concern.LR performed well overall, delivering 90.21% precision, 92.36% recall, 91.19% F-score, and 
91.36% accuracy.  

 
The balanced performance across metrics highlights LR as a reliable choice for stress 

classification, particularly in resource-constrained environments where simplicity and interpretability are 
key. However, LDA showed the least favourable results, with 70.77% precision, 80.30% recall, 71.71% 
F-score, and 71.03% accuracy. Although LDA is still somewhat useful for stress detection, its much lower 
accuracy and precision indicate that it could be better suited for complicated datasets like WESAD, where 
non-linear correlations could predominate. DTs performed better than any other classifier, making them 
the best option for stress detection. Although LR also produced reliable and consistent results, XGBoost 
is a good substitute due to its processing advantages, even though it has slightly lower precision. As 
depicted in Figure 3, DT performed with an excellent accuracy of 96.27%, surpassing others. Additionally, 
using feature selection techniques could potentially improve this accuracy. 
 

The WESAD dataset presents several chances contributions to stress detection research:  
 

• Increased Sample Size: Increasing the number of participants may improve the generalizability 
and reliability of the data and allow for a more complete investigation of each individual's 
physiological differences. 
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• Greater Participant Diversity: Connecting a broad demographic scope, including varying age 
groups, genders, and ethnic backgrounds, should capture a unique variety of physiological 
responses, improving the dataset’s relevance and representativeness. 

• Inclusion of Contextual Data: Related contextual factors, like situational ramifications or 
environmental specifics, may enhance our view of how the outside world affects physiological 
states and stress reactions. 

• Longitudinal Data Collection: Expanding the dataset to include long-term physiological data 
might benefit research into trends and patterns over time. This would provide insights into the 
dynamics of stress and affective states.  

• Expansion of Sensor Modalities: Additional sensors, including audio, video, or eye-tracking, 
would improve data analysis and help for comprehensive multimodal research in affective 
computing and stress recognition. 

 
With these advancements, the WESAD dataset could support more sophisticated models and 

increase its contributions to stress research with related applications. 
 

 
Fig. 3. Performance of the utilized classifiers 

 
V. FUTURE WORK 

 

Improving the WESAD dataset to cope with its current barriers could significantly enhance its 
value as a research resource, enabling a more profound exploration of complicated challenges in leisure 
reputation and affective computing. The dataset can support improving extra unique models and yield 
clean insights by incorporating improvements. Additionally, the WESAD framework can combine rising 
developments and technologies, unlocking new avenues for research. 

• Advanced Wearables Integration: Wearable technology with existing sensors could 
significantly increase the range of physiological data collected by supplementing the WESAD 
dataset. For instance, including eye-tracking technology or sensors that measure brain activity, 
like EEG, would use researchers to examine cognitive functions and visual attention in addition 
to the physiological reactions that have already been recorded.  
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• Mobile Sensing for Contextual Data: Mobile devices like smartphones and smartwatches can 
integrate contextual data layers such as social communications, exercise levels, and physical 
position. A broader spectrum of factors impacting emotional states and behaviors should be 
collected to gain a more thorough understanding of emotional and physical experiences in real-
world situations. Mobile sensing, which enables continuous data collection, enhances the 
richness of datasets for real-time analysis. 

• Multi-Modal Data Fusion: Integrating the WESAD dataset with information from other 
sources, such as sentiment analysis software or social media platforms, can achieve multi-
modal analysis. Researchers could combine textual or contextual data from online interactions 
with physiological data to better understand emotional states.This integration would boost the 
models' applicability in real-world scenarios, like activity detection systems, enhancing model 
accuracy and guaranteeing more nuanced insights.   

  VI.    CONCLUSION 
 

  Many physiological indicators have been extensively researched in recent years to track stress 
levels on both a physical and mental level. Frequently, wearable sensor-based technologies use each of 
these signs separately. This study compares four classifiers in depth to assess how well they work in the 
stress detection setting, which is this study's special emphasis. The findings significantly improved when 
the SMOTE was used to address the problem of class imbalance and enhance model accuracy and DT 
outperformed the other classifiers in the test attaining remarkable accuracy.  
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