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Abstract – As mobile devices are increasingly used, the number of users employing the 
Android mobile platform has been on the rise. As a result, malware detection on the 
Android mobile platform is on the increase. There are various malware detection tools; 
however, the growing variety of malware represents a major threat to conventional malware 
detection techniques. In this paper, we propose a stronger framework for malware detection 
on the Android mobile platform by incorporating intelligent classification techniques. Our 
framework comprises incorporating the XGBoost Classifier, a classifier that excels in 
dealing with vast data sets and has a low possibility of overfitting, along with other popular 
classifiers, including Naive Bayes, K-Nearest Neighbor (KNN), Decision Tree, and 
Logistic Regression. The system relies on the use of static features that it collects from the 
Android application package, which include the request for permissions and the calls made 
to the API. The classification of the application is based on whether it is harmless or 
malicious. The results clearly show that the XGBoost Classifier obtains an accuracy level 
of 100%, making it the most outstanding in terms of precision, recall, and the F1-score, 
offering the new standard in the classification of Android malware. The new framework 
guarantees the reliability and scalability of Android devices against malicious applications. 
The limitations and challenges facing the existing methods and proposals to improve the 
new trend in Android malware classification have also been discussed. 
 
 Index Terms – Android Malware Detection, XGBoost Classifier, Machine Learning, 
Malware Classification, Naive Bayes, API Calls, Precision and Recall 
 

I. INTRODUCTION 
 

While mobile devices are becoming an indispensable part of daily life, their security is a growing 
concern. Android, being the most widely used mobile operating system worldwide, has become a prime 
target for many types of malware. These malware programs largely aim to either steal sensitive 
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information, hijack personal data, or exploit system loopholes [1]. Although various solutions to this 
problem are now more numerous, the ever-increasing complexity and evolution of malware on Android 
make it more difficult to develop a detection system that works effectively [2]. We propose a robust 
Android malware detection framework that leverages intelligent classification models to accurately detect 
malicious applications [3]. Our approach addresses the limitations of traditional detection methods by 
employing a machine-learning-based solution that adapts to new and evolving malware threats. Several 
machine learning techniques, including XGBoost Classifier, Naive Bayes, K-Nearest Neighbors (KNN), 
Decision Tree, and Logistic Regression, have been widely used for this purpose in the past [4], [5], [6]. 
 

The main idea of our model is based on the XGBoost Classifier algorithm, which has already 
proven its high efficiency in performing different classification tasks due to its support for large volumes 
of data and its resilience to overfitting phenomena [7]. It should be mentioned here that to assess the 
efficiency of the suggested model, the suggested classifier based on the XGBoost algorithm has been 
compared with other notable classifiers. This is due to the fact that these classifiers have already been used 
to perform the task of malware detection in a number of other studies with impressive outcomes. In 
addition to this, the efficiency of the suggested features in performing the task of malware detection by 
using API call sequences and permissions has already been proven through a number of studies [8], [9]. 
The primary objective of this study is the development of an Android malware detection system that is 
considered reliable, scalable, and highly efficient. The primary objective of developing this Android 
application is the classification of the application as benign or malicious. With the help of this intelligent 
classification technique, our framework will be capable of accurately identifying new forms of malware 
and ensuring the overall security of Android devices. In this paper, we evaluate the superior performance 
of the XGBoost Classifier over other detectors in terms of precision and recall, thus creating a benchmark 
for future detectors [10]. 
 
Our contributions are as follows: 

• A unified end-to-end Android malware detection framework that leverages the potential of 
intelligent machine learning approaches, along with their actual implementation on the Android 
system, is proposed. 

• The optimized approach to the use of the XGBoost classifier for malware classification is 
discussed, which utilizes the Android static features to highlight the capability of the algorithm 
to identify complex relationships between malware patterns. 

• A novel static feature engineering pipeline is proposed that utilizes permission requests as well 
as API call patterns to distinguish among different malware families as well as benign 
applications without relying on expensive dynamic analysis. 

• A comprehensive imbalance-aware comparative learning strategy is proposed, which compares 
the performance of XGBoost with other conventional classification algorithms such as Naive 
Bayes, KNN, Decision Tree, and Logistic Regression in a fair and unbiased manner. 

• The state-of-the-art level of detection accuracy is achieved and validated by developing a new 
benchmark in Android malware classification using exhaustive evaluation metrics such as 
accuracy, precision, recall, F1, ROC-AUC, and convergence analysis. 
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II. LITERATURE SURVEY 

Android malware is one of the greatest cybersecurity threats as mobile applications are widely 
spreading, and attacks are becoming more sophisticated. The use of machine learning and deep learning 
techniques is an emerging trend by which researchers tackle obfuscated malware and malware that 
researchers have never seen before by using traditional signature-based techniques. Roy et al. [11] 
introduced AndyWar, which is an intelligent Android malware detector method that employs supervised 
machine learning on the app behavior and malicious behavior patterns of API calls. Their ensemble 
algorithm based on voting had a success rate of approximately 97% on several datasets. Its novelty lies in 
its behavioral ensemble detection beyond Play Protect's boundaries, sealing the loophole in signature-
based detection. Nonetheless, the methodology has a dependency on datasets and has a problem in 
identifying previously unknown malware. 

Rashid et al. [12] suggested a hybrid framework of a deep learning-based Android malware 
detection framework using multi-dimensional features, including permissions, intents, and API calls. 
Their model was 98.2% accurate, better than DeepAMD by 7.5%, confirmed on 45, 000 apps and five 
publicly available datasets. Generalization and explainability are the novelty that bridges the gap of 
dealing with the problem of obfuscation and scalability. To implement it, one will have to have large data 
and computing needs, and a hard time keeping up with malware that is completely new. Almomani et al. 
[13] suggested a sound model of Android malware detection that integrates ML classifiers of logistic 
regression and decision trees with an approach of deep learning ANN. ANN of theirs performed best on 
NATICUSdroid, with 98.0% accuracy and an AUC of 0.997, compared to LR and DT. The novelty 
emphasizes the fact that ANN is more effective in detecting changing malware, which matches the 
weakness of traditional classifiers. Nevertheless, the use of a single set of data and the inability to 
extrapolate in the case of unknown malware are weaknesses. 

Yilmaz et al. [14] introduced a developed hybrid model that combines deep learning and XGBoost 
methods of Android malware detection. Their optimal model, BiLSTM+XGBoost, had 99.33% and 
95.12% accuracy and F1-score, and was 3-4% more accurate and F1-score than standalone models. The 
novelty is the combination of sequential deep learning with XGBoost that fills the research gap of the low 
performance of individual-model approaches. Disadvantages are a dependence on the dataset, expensive 
computation, and the potential of generalizing with unknown malware. Zhang et al. [15] came up with 
MPDroid, an Android malware detector that is multimodal and pre-trained on static function call graphs 
and dynamic API call graphs through GCN fusion. It achieved 98.3% accuracy, 97.6% F1-score, and a 
detection time of less than 7.39 seconds, which is better than current methods. The novelty is that the 
multimodal pre-training is efficiently done to achieve faster downstream detection, with the next 
generation filling the gap of ineffective and slow unimodal methods. Nevertheless, the complexity of 
graph extraction and the ability to applyit  to new malware is currently a major limitation. 

To address the problem of the slow reaction of signature-based malware detection, Alemarian et 
al. [16] suggested autonomous machine-based defending strategies that use machine learning to detect 
Android malware. Their model emphasizes the use of ML-based adaptive defense in the face of such 
challenges as diversity of apps and malware obfuscation, with the support of real-life datasets benchmark. 
The newness revolves around autonomous, scalable security integration, and it is a way of filling the divide 
of non-adaptive conventional defenses. The weaknesses are the reliance on datasets and the inability to 
deal with unknown malware forms. Alomar et al. [17] suggested a permissions-based malware detection 
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model of Android based on machine learning to identify the main permissions that separate malicious and 
benign applications. They obtained a top model, SVM with RFE, with 98.88% accuracy with only 13 
permissions, and took only 12 ms to execute detection. The newcomer is a light and rapid permission-
centric model that targets the void of computationally intensive malware detectors. Nonetheless, the use 
of permissions is still a major drawback and might be circumvented by sophisticated malware. 

Prajapati et al. [18] came up with a malware detection method, which is static, with features of 
permission and API call behavior to identify sneaky malicious applications. They have compared several 
ML/DL models and ensemble approaches, including RF, XGBoost, and CatBoost, with the latter being 
the most effective in the case of the imbalanced datasets. It is a combined statistical framework with wide 
benchmarking between the limited comparative assessments. The weaknesses are in the form of a lack of 
dynamic dependence and the absence of specific best accuracy information. Comparing NN, RF, SVM, 
AdaBoost, and XGBoost, Souaci et al. [19] proposed a malware detection system in Android aided with 
supervised ML models trained over 15,000+ real-world applications. Their Neural Network attained 95% 
accuracy and 99% AUC, and SHAP has been used to explain the results with deployment on a web 
platform. The novelty can be viewed as interpretable and practical malware detection, which fits the black-
box ML solution gap. Nevertheless, it still has the disadvantage of dataset reliance and underperformance 
relative to state-of-the-art deep models. Iqubal et al. [20] have suggested a machine learning-based 
malware detection method of Android-based devices utilizing the app permission characteristics. They 
compared various algorithms, and the random forest had the best accuracy of 97.20 % NATICUSdroid 
permission dataset. The originality is a scalable comparative ML framework that fills the gap of signature-
based constraints. Nonetheless, the use of static permissions and the inability to generalize to malware not 
in view are major constraints. 

 
III. PROPOSED METHODOLOGY  

The AndroidMalware system is designed primarily as an intelligent classifier that combines admin 
control, user participation, and artificial intelligence-based Android malware prediction. Looking at the 
design of this Android Malware Detection System, it is possible to identify two major functions: Admin 
and User, both of which connect to the system through their respective dashboards. The Admin Dashboard, 
on the other hand, is designed mainly for user management and monitoring of the provided models. User 
participation, on the other hand, is achieved through two major features: prediction module and training 
module. The training module ensures dataset preparation through various preprocessing steps. It then feeds 
the processed information into the model trainer, effectively learning the classifier. After learning, 
prediction module implementation utilizes the trained XGBoost model to classify Android applications or 
traffic flows accordingly—to either malware or benign. The fact that there is an end-to-end system makes 
this system robust and accurate for effective Android malware detection. Figure 1 depicts the overall 
research methodology. 

A. Dataset Description 
The Android Malware Detection dataset, available on Kaggle, is designed for researchers 

developing machine learning models for Android malware detection. This dataset is used by researchers 
to develop machine learning models to detect malware encoded for the Android platform. Thus, this 
dataset has 2,000 samples of applications developed on the Android platform, where 1,000 are classified 
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as benign, and 1,000 are classified as malicious, respectively. Among the samples, 1,200 are used in the 
dataset for the purpose of training, while 800 are used to test the developed machine learning model by 
the researchers. In this dataset, 92 features are provided to the researchers, which enable them to train the 
machine learning model on the characteristics of the application developed on the Android platform. This 
dataset thus appreciates the challenges of class imbalance and redundancy; hence, it constitutes an 
important platform that researchers use to address the issue of malware in the Android platform through 
the application of machine learning models in the mobile computing field. 

 

 

Fig. 1: Graphical representation of the proposed model architecture 
 
B. Data Preprocessing 
Before training, several preprocessing techniques were used to ensure that the intelligent classification 
models learned meaningful malware patterns.  

• Label Standardization: The Android malware dataset, acquired from Kaggle, comprises four main 
categories and 355,630 samples, with 86 features, including a target label column. A mapping 
function was used to transform the categorical labels into numerical form in order to facilitate 
supervised learning: 

f (y) = 

0,			𝐵𝑒𝑛𝑖𝑔𝑛
1,			𝐴𝑛𝑑𝑟𝑜𝑖𝑑	𝐴𝑑𝑤𝑎𝑟𝑒
2,			𝐴𝑛𝑑𝑟𝑜𝑖𝑑	𝑆𝑐𝑎𝑟𝑒𝑤𝑎𝑟𝑒

3,			𝐴𝑛𝑑𝑟𝑜𝑖𝑑	𝑆𝑀𝑆	𝑀𝐴𝑙𝑤𝑎𝑟𝑒

 

As a result, the classification task turns into a prediction issue with many classes: 
y ∊ {0, 1, 2, 3} 

• Encoding of Categorical Features: IP addresses, flow identifiers, and protocol types are among the 
dataset attributes that were initially recorded as object-based categorical values. Label encoding 
was used because machine learning classifiers require numerical inputs. For every categorical 
feature 𝑋8, encoding was performed as: 
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𝑋89:8 = 𝐿𝑎𝑏𝑒𝑙𝐸𝑛𝑐𝑜𝑑𝑒𝑟	(𝑋8) 
Each different category is given a unique integer by this transformation: 

𝑋8 	⟶ {0, 1, 2, … . , 𝑘 − 1} 
where, k describes the total number of unique categories in that feature. 

• Handling Missing Values: Missing values were handled prior to training in order to preserve 
dataset consistency. Numerical features were confirmed to have no null values, and object-based 
missing entries were substituted with a neutral placeholder:  

𝑋HI =
𝑁, 𝑖𝑓𝑋HI	𝑖𝑠		𝑚𝑖𝑠𝑠𝑖𝑛𝑔

𝑥HI,			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

After preprocessing, the data contained: 

𝑁𝑢𝑙𝑙 𝑋I = 0
:

IRS

 

• Feature and Target Separation: There is one label column and a total of 85 predictive features in 
the dataset. The target vector y and feature matrix X were defined as follows:  

X = {𝑥S, 𝑥T, …… . . , 𝑥UV} 
y = label 

Thus, the learning objective becomes: 
h (X) ⟶y 

where, h (X) defines the intelligent classification function. 
• Class Imbalance Correction: Malware classes dominated benign traffic in the original dataset, 

which showed a notable imbalance. A balancing method based on resampling was used to avoid 
biased learning. Assume that each class has the following number of samples:  

𝑁8 = |{y = 1}| 
The minority class size is: 

𝑁WH: = min (𝑁X,𝑁S, 𝑁T, 𝑁Y) 
Every class was resampled to match 𝑁WH:: 

𝑁8Z[\[:89] = 	𝑁WH:  
After balancing, the dataset divided the equal distributions: 

𝑁X	 = 	𝑁S = 	𝑁T = 	𝑁Y 
• Train–Test Split: The processed dataset was split into training and testing groups in an 80:20 ratio 

in order to assess detection performance.  
𝑋^_[H:, 𝑋^9`^, 𝑦^_[H:, 𝑦^9`^ = 𝑆𝑝𝑙𝑖𝑡	(𝑋, 𝑦) 

C. Machine Learning Classifiers 

Several supervised machine learning classifiers were used in this study to identify and classify Android 
malware. These classifiers were chosen for their ability to handle non-linear relationships, handle high-
dimensional network-flow features, and deliver reliable results in multi-class environments. Below is a 
quick explanation of each classifier.  

• XGBoost Classifier: Several weak learners (decision trees) are consecutively trained to minimize 
a regularized objective function in XGBoost, an ensemble learning technique based on gradient 
boosting. The following is the forecast for an input sample 𝑥H: 
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𝑦H = 𝑓c 𝑥H , 𝑓c ∊ 	ℱ
e

cRS

 

where, ℱ  defines the space of regression tree. Each iteration's optimized objective function is 
described as follows:  

ℒ = ℓ(𝑦H, 𝑦H)H + Ω(𝑓c)c  
Here, ℓ(𝑦H, 𝑦H) defines the loss function which reducing overfitting and enhancing generalization. 

• Naive Bayes Classifier: A probabilistic classifier based on the Bayes theorem; Naive Bayes 
assumes conditional independence between features. The posterior probability of a class 𝐶I given 
an input vector X = (𝑥S, 𝑥T, …… . . , 𝑥:) is calculated as: 

P (𝐶I|𝑋) = 
l	(mn) l(o

pqr sp|mn)
l(t)

 

By maximizing the posterior probability, the predicted class is chosen: 

𝐶 = 	
arg𝑚𝑎𝑥

𝑐I 𝑃(𝐶I) 𝑃(𝑥H|𝐶I)
:

HRS

 

• k-Nearest Neighbors (KNN): A non-parametric, instance-based learning technique called KNN 
uses the majority class of a sample's k closest neighbors to classify it. Usually, the Euclidean 
distance is used to calculate the distance between samples:  

𝑑 𝑥, 𝑥H = (𝑥I − 𝑥HI)T
:

IRS

 

By majority vote among the closest neighbors, the class label is assigned: 
𝑦 = 𝑚𝑜𝑑𝑒	{𝑦H|𝑥H 	 ∊ 𝒩c 𝑥 } 

• Decision Tree Classifier: Using recursive decision rules that optimize information gain, a decision 
tree divides the feature space. The definition of the entropy of a dataset 𝑆 is:  

H (S) = - 𝑝8𝑙𝑜𝑔T𝑝88  
For a feature A, the information gain is calculated as follows:  

IG (S, A) = H (S) - |z{|
|z||∊} 𝐻	(𝑆|) 

To split the data at each node, the feature with the maximum information gain is chosen. 
• Logistic Regression: By applying a sigmoid activation function to a linear combination of input 

features, logistic regression estimates the likelihood of a binary outcome:  
P (y=1|x) = σ (z) = S

S�9��
, 𝑧 = 	𝑤�𝑋 + 𝑏 

The model parameters are optimized by minimizing the binary cross-entropy loss: 
ℒ = - S

�
𝑦H𝑙𝑜𝑔(𝑦H + 1 − 𝑦H log	(1 − 𝑦H)]�

HRS  
D. Deployment Procedure Architecture 

A deployment diagram 5 in UML shows how the system, in actuality, fits into the real world, 
where the pieces of software, like applications, services, or databases, reside on hardware nodes, like a 
server, a client, or a cloud environment. It shows you how everything is configured, how everything talks 
to each other when they are running. This type of diagram is useful in understanding how it runs, how it's 
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deployed, how it's distributed, when you are trying to work with it in terms of development, deployment, 
or installation. 
 

 
 

Fig. 2: Deployment procedure of the proposed system 
 
IV. HARDWARE   SOFTWARE SPECIFICATION 
 

The experimental setup for the proposed Android malware detection framework comprises several 
hardware and software requirements for efficient performance. Firstly, on the hardware side, the proposed 
framework will need an Intel i9 processor, 32 GB RAM, and at least 1 TB of storage. As far as software 
is concerned, the environment for developing this application is Python, along with specific frameworks 
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such as Django for web-based user interface construction and integration. This application will run on 
specific software, such as Windows 10 64-bit, and will be able to support other browsers, such as Google 
Chrome, for cross-platform client-side testing. It can also be integrated with specific tools such as SQLite 
for efficient data handling. Key libraries such as XGBoost, Scikit-Learn, and SMOTE are integrated and 
will be used for the implementation of the detection model and to overcome specific challenges such as 
class imbalance. Other tools, such as Pandas for data manipulation, NumPy for numerical data calculations, 
and Matplotlib/Seaborn for data visualization, are included to ensure comprehensive data analysis for the 
overall performance of this application for the purpose of intrusion detection. 

 
V. RESULT & DISCUSSION 
 
A. Performance of the models 
 

Table 1 presents the classification models have different performance levels. XGBoost performed 
the best among the classification models. The accuracy, precision, recall, and F1-score for XGBoost were 
1.00 for all classes. This clearly shows the effectiveness of XGBoost in handling non-linear relationships 
and class-wise differences. The gradient boosting technique with regularization provides XGBoost the 
advantage of achieving the optimal trade-off for bias and variance, making it the best choice for structured 
cybercrime-related data. 
 

Table 1: Performance of the classification models 
Model Accuracy Precision (Avg) Recall (Avg) F1-score (Avg) 

XGBoost Classifier 1.00 1.00 1.00 1.00 
Logistic Regression 0.91 0.91 0.91 0.91 

Decision Tree Classifier 0.84 0.86 0.83 0.84 
Naive Bayes Classifier 0.81 0.84 0.79 0.81 

k-Nearest Neighbors (KNN) 0.81 0.82 0.81 0.81 
 

Logistic Regression had a high accuracy rate of 0.91, showing the reliability and consistency of 
the model. The precision, recall, and F1-score for the model were balanced, with each having a value of 
0.91 for all classes. This clearly shows the effectiveness of the model. However, the model performed 
worse than XGBoost, showing the limitations of the model in handling the non-linear relationships present 
in the dataset. The Decision Tree classifier had a moderate accuracy rate of 0.84. The model performed 
well for class 1, with a high recall rate of 1.00. The model also performed well for class 3, with a high 
precision rate of 0.86. However, the model performed poorly for class 2, with a low recall rate of 0.74. 
This clearly shows the limitations of the model in handling class-wise differences. 
 

Naive Bayes obtained an overall accuracy of 0.81. It performed exceptionally well for class 1 with 
recall and F1-score of 1.00 and 0.99, respectively. However, its performance for class 3 was poor with 
recall dropping to 0.61. The feature independence assumption may have impacted its performance since 
there are correlations in the feature set in actual forensic data. K-Nearest Neighbors (KNN) obtained an 
overall accuracy of 0.81. It performed exceptionally well for class 1 with precision and recall of 0.99. 
However, its performance for classes 2 and 3 was poor with F1-scores of 0.74 and 0.73, respectively. The 
model’s performance may have been impacted by its use of distance-based similarity since class 
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boundaries are complex and overlapping in the feature space. The results show that ensemble-based 
learning using the XGBoost model performs better than other models for the classification of cybercrime. 
Even though other models such as Logistic Regression and Decision Trees perform satisfactorily and are 
acceptable for classification purposes, their limitations are exposed when comparing their performance 
with that of the ensemble-based model. The results validate the selection of the XGBoost model for the 
development of the proposed system. 
 
B. Confusion Matrix Analysis 
 

 
 

Fig. 3: Confusion matrix analysis of the XGBoost classifier 
 

The Figure 3 represents the confusion matrix for the XGBoost classifier, showing a detailed 
description of the prediction results for each class among the four classes, namely Android Adware, 
Android Scareware, SMS Malware, and Benign applications. The matrix is dominated by the diagonal 
values, showing a high level of correctness for the classification results. For the Android Adware class, 
all 4,770 samples are correctly classified with no false predictions for other classes. The Android 
Scareware class also represents a high level of correctness, with all 29,541 samples classified correctly 
without any false predictions. The Benign class also represents a high level of correctness, with all 13,317 
samples classified correctly without any false predictions. However, for the SMS Malware class, out of 
the total 23,498 samples, 23,494 samples are classified correctly, with only 4 samples classified as Android 
Adware. This is a very minor level of false predictions, showing the high level of correctness for the 
classification results. No samples from the SMS Malware class are classified as Scareware or Benign, 
showing the high level of correctness for the classification results. 
 

From the above results, it can be concluded that the confusion matrix represents a high level of 
correctness for the classification results, with correct predictions above 99.9% for all the classes. The 
results demonstrate the effectiveness of the proposed model for classifying different classes of malware 
and benign applications, showing the high level of correctness for the classification results. The results 
demonstrate the effectiveness of the proposed model for classifying different classes of malware and 
benign applications, showing the high level of correctness for the classification results. 
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C. ROC Curve Analysis 

 
Fig. 4: ROC curve analysis of the XGBoost classifier 

 
The ROC curve in Figure 4 shows the performance of the XGBoost model over its suitability in 

distinguishing between malware and benign activities. In the results section, the curve increases rapidly 
towards the top left corner of the curve, which shows that the model is very effective in recognizing 
malware with minimal false alarms. The AUC values converge to 1.00, which suggests that the degree of 
separability between all the types of malwares is close to perfection. This indicates XGBoost can clearly 
distinguish between harmful or non-harmful actions with confidence. The diagonal line represents the line 
of a random guess. The fact that the ROC curve remains well above this diagonal line proves that XGBoost 
performs much better than the random guess. The results have matched the findings of the confusion 
matrix and other metrics, thereby proving that XGBoost is an incredibly reliable model for classifying 
cybercrime and Android malware with the proposed system. 
 
D. Training Convergence Analysis of the XGBoost Classifier  
 

 
Fig. 5: Training Convergence Analysis of the XGBoost 

 
These training curves in Figure 8 tells the same story: the XGBoost classifier is effective and stable 

inside our framework of Android malware detection. Checking the graph for loss, the training loss 
nosedives almost instantly, from approximately 0.8 to about 0.02 in only a few epochs, which indicates 
that the model is rapidly picking up the key discriminative patterns of the data. This smooth drop indicates 
good optimization without any signs of unstability or poor convergence. Meanwhile, the accuracy graph 
rises smoothly. Training accuracy rises from approximately 0.82 to approach 1.00, and validation accuracy 
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mirrors this trend, increasing from about 0.79 to nearly 1.00. Strong tracking between training and 
validation performance suggests strong generalization, with little to no overfitting. These curves combined 
give an exact view of the table, where XGBoost reaches 100% in accuracy, precision, recall, and F1-score. 
Minimal loss with near-perfect growth in accuracy proves XGBoost to be a highly dependable classifier 
in case of robust Android malware and cybercrime threat detection in the proposed system. 
 
VI.  FUTURE ENHANCEMENTS 

Although the proposed framework of Android malware detection using the XGBoost algorithm 
works with a considerable level of accuracy and exceeds the performance of other classifiers, such as 
Naive Bayes, KNN, Decision Tree, and Logistic Regression, it still has several potential ways of 
improvement in the future. One of the major enhancements is the implementation of the model into the 
real-time Android environment using lightweight frameworks, including TensorFlow Lite, to offer viable 
mobile-based detection.  The other pertinent direction that is important in the future is the enhanced 
resistance of the system to adversarial and obfuscated malware attacks. By using adversarial training and 
robust optimization techniques, the model can be made reliable even under such circumstances when 
malware authors may be trying to escape the notice of the model. Another area that needs to be advanced 
is privacy preservation. Oncology Malicious activity In future research, it is possible to investigate 
federated learning, where each device can be trained to detect malware without sharing sensitive user data, 
enhancing privacy and generalization. Moreover, the existing system is primarily based on fixed aspects 
of permissions and API calls. The accuracy of detection can be increased in future studies by combining 
dynamic behavioral characteristics such as system calls, memory usage, and runtime activities as a more 
complete analysis of malware. Lastly, more datasets with zero-day malware samples, more advanced 
feature reduction methods, inclusion of Explainable AI components such as SHAP or LIME, and ensemble 
models can be explored to improve the system further, and to enable the system to perform sufficiently on 
resource-constrained devices. 

VII. CONCLUSION  
 

 The study represents a powerful framework for the detection and classification of Android-based 
malware using a number of machine learning algorithms, specifically the XGBoost Classifier algorithm. 
Such a framework makes use of a number of features, including permission and API call-based features 
available in an Android application package file. Through thorough experimental verification, it was 
evident that the proposed XGBoost Classifier achieves 100% accuracy in detecting Android malware. In 
addition, it can effectively outperform other classifiers, including Naive Bayes, K-Nearest Neighbors, 
Decision Tree, and Logistic Regression. Even though the proposed framework offers advantages for 
achieving high accuracy, it can be improved in the near future. Specifically, it can be improved to enable 
it to detect Android malware in real-time, as well as to make it even better at resisting several evasion 
techniques, considering different privacy-preserving techniques, such as federated learning. Android 
malware detection using the proposed framework represents a new benchmark and has tremendous 
potential to significantly improve Android device security. 
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