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Abstract – A cyber threat refers to an illegal activity intended to breach the confidentiality 
and integrity of computer systems and data. Examples of cyber threats include malware, 
phishing, unauthorized computer access, and denial-of-service attacks. It has made the 
traditionally relied-upon Intrusion Detection System based on signature systems obsolete 
and incapable of providing the much-needed protection against hacking incidents. Keeping 
this concern in mind, we propose an innovative concept for Deep Learning-Enabled 
Honeypot Cyber Attack Systems based on Honeypot-Based Artificial Neural Network 
Systems to facilitate efficient intelligence for effective analysis of cyber attacks. 
Experimental evaluation of the proposals is conducted using the CIC-IDS-2017 dataset for 
the attack scenario under consideration throughout the simulation. An intensive data 
preprocessing technique is employed to address high dimensionality, noisy features, and 
imbalance. The proposed HP-ANN model is systematically compared to several machine 
learning and deep learning baselines, namely Logistic Regression (LR), Support Vector 
Machine (SVM), Random Forest (RF), K-Nearest Neighbors (KNN), Convolutional 
Neural Network (CNN), and Long Short-Term Memory (LSTM). From the results, the 
proposed HP-ANN model significantly outperforms all baselines in terms of accuracy, 
precision, recall, and F1-score, achieving 1.00 and a very near-perfect ROC-AUC. Besides, 
the model's stability and fast learning ability are undeniable, as demonstrated by additional 
analyses of convergence trends and confusion matrices. 
 
Index Terms – Honeypot-Based Security, Cyber Threat Analysis, Artificial Neural 
Network, Deep Learning, Intrusion Detection, SIEM, SOAR 
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I. INTRODUCTION 

The immense growth of digital ecosystems is driven by advances such as cloud computing, the 
Internet of Things (IoT), edge intelligence, and software-defined infrastructure. It is defined as being able 
to change our view of the existing cyber world. It is mentioned that while advances in technology, through 
all the positive qualities that the scalability of the connections elevated, have brought with them much risk 
because the advances of modern cyber attacks are no longer individualized or random, but automated, 
continuous, multiplexed, and increasingly driven by Artificial Intelligence" that allows adversaries to 
"defeat traditional security measures quite so easily [1], [2]. Conventional security measures, such as 
firewalls, signature-based Intrusion Detection System (IDS) technology, and rule-based Intrusion 
Prevention System (IPS) technology, mostly depend on reactive defense models. This is because they are 
entirely dependent on a number of patterns and signatures related to intruding agents. As a result, these 
models have no impact whatsoever when confronted with zero-day exploits, polymorphic infections, and 
APTs that evade detection by Capabilities and Hitchhiker through adaptation and/or change [3]. Research 
developments and findings indicate that attackers can persist within an organization's infrastructure 
without detection while conducting reconnaissance, navigation, and data extraction by bypassing the blind 
spots of static network security models. 

In this regard, cybersecurity research has increasingly shifted toward proactive, intelligence-driven, 
and deception-based defense strategies. Of these, one of the most important and pioneering technologies 
that has revolutionized modern cyber defense paradigms is the honeypot. Honeypots are decoy systems, 
applications, or infrastructures that emulate legitimate network services to attract malicious actors. Unlike 
other security tools and their approaches, which primarily focus on securing assets in the production 
environment, honeypots are designed to observe and monitor attackers, enabling precise analysis of their 
tactics, techniques, and procedures with reduced risk to existing systems and assets [5]. A key benefit of 
honeypots is their ability to produce high-fidelity threat intelligence at extremely low false-positive rates, 
since any activity against a honeypot is intrinsically suspect. Recent research has shown that honeypot-
assisted detection frameworks can outperform traditional IDS solutions for stealthy, low-frequency, and 
zero-day attack detection [6]. Despite these advantages, traditional static honeypots still face serious 
challenges, including fingerprinting, limited scalability, and the risk of evasion by sophisticated 
adversaries. 

Indeed, in this respect, modern research focuses on building adaptive and intelligent honeypots 
using the latest technologies, particularly artificial intelligence and machine learning. The intelligent 
honeypot can change its state and behavior in real time based on its observations of attacks, making 
honeypot detection and evasion much harder than before [7]. Machine learning approaches using honeypot 
data also exhibit strong capabilities for anomaly detection and classification, enabling early identification 
of advanced attacks without prior knowledge of their signatures [8]. Moreover, recent publications 
emphasize various aspects of ensuring the seamless integration of honeypots into overall security 
infrastructures, rather than mere silo deployments of these tools. In addition, the use of Honeypots in 
conjunction with Security Information & Event Management Systems enables the analysis of the trends 
relating to the attacks, while the use of the same in conjunction with Security Orchestration, Automation 
& Response Systems improves the speed in responding to the incidents, thus enhancing operational 
efficiency within the organization’s cybersecurity ecosystem. Therefore, another remarkable improvement 
in the use of honeypot-based information for predictive cybersecurity analytics focuses on forecasting 
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attacker activities using various deep-learning-based forecasting algorithms, enabling cybersecurity 
analysts to leverage existing honeypot interaction data for predictive analytics [10]. This development has 
greatly redefined the concept of using honeypots, treating them as a crucial part of next-generation 
cybersecurity. 

The main contributions are as follows: 

• We propose a new framework for a unified cybersecurity environment that tightly integrates 
deception-based honeypots with the powerful potential of a deep learning-based system, namely 
an Artificial Neural Network (HP-ANN). 

• Unlike traditional intrusion detection tools, the suggested technique enables the detection of 
attackers' tactics, techniques, and procedures. The integrated simulation of the Honeypot concept 
enables such a determination. 

• Hence, the proposed framework effectively integrates the attributes of honeypots, ANN-based 
threat classification, IDPS, SIEM, and SOAR tools into a single stream, which would otherwise 
be divided across multiple stages. Such detection encompasses the gap that usually remains, i.e., 
the gap that persists among detection, generation, and response itself. 

• High precision is obtained through the training of the HP-ANN, as the data obtained from the 
Honeypot attacks is highly accurate, resulting in zero false positive cases, which is a significant 
issue faced by existing IDS models in the real world. 

• The proposed architecture of HP-ANN shows promising ability in terms of fast convergence speed, 
strong generalization, and unparalleled performance in the face of complex nonlinear relations 
within network traffic features and network interactions between honeypots. 

• We present an architecturally deployable solution with features such as real-time monitoring and 
central logging, rendering it deployable to an enterprise/cloud environment/networks scenario. 

 

II. LITERATURE SURVEY 

The cyber threat detection has changed the manual inspection to automated intelligence. 
Combinations of honeypots with computational intelligence can be used to have a proactive defense 
mechanism that does not only attract attackers but it also classifies them as well. Recent studies are aimed 
at enhancing the granularity of determination and low rates of false-positive detectives. The papers below 
reflect the current art of using machine learning and deep learning to network security and honeypot 
environment, and their shift to more elaborate neural networks that can autonomously perform feature 
extraction and real-time threat identification across the various infrastructures around the network. The 
issue found by Mishra and Singh [11] was the problem of implementing heavy security protocols on 
resource-constrained IoT fog nodes and this causes a high rate of latency. To solve this they suggested an 
Information Gain based selection of features together with a tailor made ANN. They made use of the 
CIDDS-001 dataset which was an IDS dataset of flow-based, in terms of network traffic records, 
containing several hundred thousand records. In their findings, they were reported to have a training 
accuracy of 99.1 that was very effective in identifying DoS and PortScan attacks. This study has 
consequences in the sector since it allows security at low latencies in IoT ecosystems, but the major 
weakness is that it is not tested on up-to-date zero-day exploits in a realistic setting.  
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Kaur et al. [12] handled the issue of diminishing efficiency in the classical algorithms by the fast 
changing nature of contemporary cyber attacks. They have used the model of random forest (RF), SVM, 
and Decision Tree (DT) and compared the attributes of the three models. The research made use of KDD 
Cup '99 and NSL-KDD dataset, which contains more 4.9 million and 125,000 records respectively. The 
findings showed that Random Forest was most accurate (98.7) but it was ineffective in Multi-stage attacks. 
Though the present study can be considered an important reference point to ML models, it is limited in 
the fact that it uses old datasets that are no longer relevant to the current trends of network traffic. Adebiyi 
et al. [13] concentrated on the slowness of processing speed of data of high dimensions in network data 
related to anomaly detection. They also used Principal Component Analysis (PCA) to reduce features and 
a combination of the ML classifier. The analysis was based on the NSL-KDD dataset that offers thousands 
of processed network cases. They have completed a 20 percent contrast in the pace of detection with 
accuracy 97.5 percent. The study has an implication on the creation of light weighted IDS structures, yet 
its drawback is that it may lose some of the essential security capabilities in the dimensionality reduction 
process. 3.2 Deep Learning-based Approaches 

Chen et al. [14] addressed the failure of conventional deep learning models to prioritize the risky 
parts of the traffic in large networks. They suggested a Dual-Encoder system that had Attention 
Mechanisms in order to enhance concentration. The data was used as UNSW-NB15 and CIC-IDS 2017 
and included a few gigabytes of raw packet data. Their model was found to have had a high F1-score and 
accuracy of 99.4 percent which increased the accuracy of malicious traffic recognition. This paper opens 
the door to attention-based security models, although, the dual-encoder configuration of this particular 
model needs a large computational power which is a significant limitation. A problem Suleman et al. [15] 
have identified is high noise with incorrect detection in honeypot-derived data. Their solution is called 
IntrusionGuard and it applies a multi-layer Artificial Neural Network (ANN). The author used a 
specialized Network Intrusion Dataset derived in Kaggle, which included more than 120,000 cases. The 
model had a record high of 1.00 (100%) accuracy, precision and recall. This study is the first step toward 
using honeypots to gather high-fidelity threat intelligence, but the ideal accuracy implies the possibility of 
overfitting and, therefore, poor performance on entirely untested real data. 

Rahman et al. [16] pointed out that the current models were weak in the identification of botnet 
attacks and consecutive traffic. They processed network traffic through the Convolutional Neural 
Networks (CNN) to convert it into a 2D image to analyze its spatial patterns. The dataset they used is the 
CTU-13 botnet dataset that consists of millions of malicious flow records. The IPRDs were found to 
perform at 98.2 percent, which was very effective in detecting behaviors within a botnet. Although this 
affects the visualization method of traffic, it has a major weakness since it cannot decrypt encrypted traffic 
streams. Khan et al. [17] aimed to address the issue of lacking global information in the identification of 
DDoS attacks. They also used a state of the art Vision Transformer (ViT) which had Cross-Attention. The 
study involved the use of CICDDoS2019 data that is huge approaching the mark of several terabytes of 
data. The model had an accuracy of 99.6 percent in detecting complex DDoS patterns. This confirms the 
ability of transformer models to be successful in security though the consumption of memory and long 
training durations are also major weaknesses. 

Alhassan et al. [18] responded to this weakness in terms of Cyber-Physical Systems (CPS) that is 
susceptible to adversarial attacks that mislead AI models. They created an adversarial training technique 
of a Robust Deep Neural Network (DNN) architecture. The dataset utilized in the study was a SCADA 
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specialized industrial data consisting of sensor measurements alongside network traces. The model was 
found to be 97.8% accurate even in the adversarial noisey conditions. This has both effects on the security 
of critical infrastructure, and its drawback is that it is specifically focused on OT (Operational Technology) 
networks and not general IT environment. 

Table I: Overview of existing research 

Reference Dataset & Source Approach / AI 
Model 

Key Results Limitations 

Mishra & Singh [11] CIDDS-001 (Flow-
based) 

Information Gain + 
ANN 

99.1% Training 
Accuracy 

Lacks real-time adaptability 
for zero-day threats 

Kaur et al. [12] KDD Cup '99 & 
NSL-KDD 

RF, SVM, and DT RF achieved 98.7% 
accuracy 

Relies on legacy data not 
representative of modern 

traffic 
Adebiyi et al. [13] NSL-KDD PCA + Hybrid ML 20% faster 

detection; 97.5% 
accuracy 

Dimensionality reduction 
may lose critical security 

features 
Chen et al. [14] UNSW-NB15 & 

CIC-IDS2017 
Dual-Encoder + 

Attention 
99.4% Accuracy; 

high F1-score 
Requires high computational 
power for dual-encoder setup 

Suleman et al. [15] Network Intrusion 
Dataset (Kaggle) 

Multi-layer ANN 
(IntrusionGuard) 

1.00 Accuracy, 
Precision, & Recall 

Perfect accuracy suggests a 
high risk of overfitting 

Rahman et al. [16] CTU-13 Botnet 
Dataset 

CNN (Traffic-to-
Image) 

98.2% Detection 
Rate 

Ineffective against encrypted 
network traffic streams 

Khan et al. [17] CICDDoS2019 
(Terabyte-scale) 

Vision Transformer 
(ViT) 

99.6% Accuracy for 
DDoS 

Excessive memory usage and 
long training cycles 

Alhassan et al. [18] SCADA Industrial 
Dataset 

Robust DNN + 
Adversarial Training 

97.8% Accuracy 
under noise 

Narrow focus on OT 
networks rather than general 

IT 
 

It can be concluded that the literature presents a clear direction of progress of the traditional 
machine learning to advanced deep learning models to detect cyber threats. Traditional methods are 
efficient in terms of computation, but fail to deal with the sophistication of contemporary opposing 
strategies. ANNs and Transformers are the most accurate deep learning architectures, but they have issues 
of high resource usage and overfitting. These results justify the need of the proposed HP-ANN model, 
which aims at maximizing the accuracy of the classifications of honeypot system offering advanced 
analysis. 

III. METHODS & MATERIALS 
 
A. Dataset Description 

In this study, we fetched a publicly available network intrusion dataset from Kaggle, namely the 
Network Intrusion Dataset (CIC-IDS-2017), which is derived from the Intrusion Detection Evaluation 
Dataset released by the Canadian Institute for Cybersecurity. The dataset records actual network traffic 
that was gathered over five days in a controlled but realistic enterprise network configuration (July 3 to 
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July 7, 2017) containing both benign (normal) traffic and a variety of malicious (anomalous) activities that 
were created using actual attack tools like Kali Linux and carried out against several victim systems 
(Windows, Linux, and macOS) behind a NAT-enabled firewall.  

 
In terms of classification, the dataset is split into two main classes:  
• Normal (Benign) traffic representing legitimate user activities, and 
• Anomaly (Attack) traffic represents various cyber threats. 

Brute-force attacks (FTP and SSH), denial-of-service and distributed denial-of-service attacks 
(Slowloris, SlowHTTPTest, Hulk, GoldenEye, LOIT), web-based attacks (SQL injection, XSS, web brute 
force), infiltration attacks (malware downloads, privilege escalation), botnet activity (ARES), port 
scanning, and Heartbleed exploits are all included in the attack scenarios.  The dataset consists of flow-
based network records, where each instance represents a bidirectional network flow extracted using 
CICFlowMeter. It contains a rich set of statistical and behavioral features describing packet-level and 
flow-level characteristics, such as flow duration, packet length statistics, byte rates, inter-arrival times, 
header flags, and protocol-related attributes. The dataset comprises millions of network flow instances, 
offering sufficient volume and diversity to train deep learning models effectively but also presenting 
challenges in high-dimensional feature spaces and class imbalance.  
 
B. Data Pre-processing 

To ensure data quality, numerical stability, and reliable learning behavior of the proposed ANN-
based intrusion detection framework, a structured and rigorous data preprocessing pipeline was applied to 
the CIC-IDS-2017 network intrusion dataset. First, erroneous numerical values were checked in the raw 
network traffic records. Since flow-level properties like as packet speeds and inter-arrival times may 
generate undefined or unbounded values during capture and aggregation, all positive and negative infinity 
values were replaced with missing values (NaN). The missing values were handled using zero imputation, 
which preserves the dataset's dimensional integrity while avoiding biased sample removal. To ensure 
computational consistency across subsequent processing stages, all feature values were securely converted 
to integers after cleaning.  
 
Let, the original dataset be described as: 

D = (𝑥#, 𝑦#)}#()*  
where, 𝑥# 	 ∊ ℝ.  defines the feature vector of the i-th network flow and 𝑓#  ∊ {0,1} represents the 
corresponding class label, with 0 presenting normal traffic and 1 describing anomalous behavior. To avoid 
data leaking during model training, the label attribute was isolated from the feature space.  
To address the wide variation in feature scales commonly observed in network traffic data, feature 
normalization was performed employing standard score normalization. Every feature 𝑥0 was converted as: 

𝑥01 = 	
𝑥0 −	µ0
σ0

 

where, µ0 and σ0 represent the j j-th feature's mean and standard deviation, respectively. In addition to 
preventing the dominance of high-magnitude attributes such as byte counts or packet durations, this step 
ensures that all features contribute proportionately throughout ANN training.  
After normalization, another process, referred to as outlier sweep, was performed to filter out extreme 
deviations that might interfere with proper learning and confuse classification decisions. A process similar 
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to a Boxen plot scan was performed to filter out unusual values in some of the significant traffic 
parameters, such as forward stats, backward stats, flow byte rate, inter-arrival times, as well as active and 
idle durations, according to unusually high standardized values in some of these parameters, such that a 
filter could be implemented to avoid noisy incoming traffic while retaining attack patterns useful in 
intrusion detection. 
Once the outliers were removed, the refined data set contained 188,835 network flow instances and 55 
attributes, providing an optimal balance between information and data quality. The feature data set X and 
the label data set Y were then split into training and test sets. The dataset was then split into training and 
test sets at an 80:20 ratio.  
	

 
 
 

Fig. 1: Graphical representation of the overall research methodology 
 
C. Proposed System Architecture 
 

This section presents an in-depth and comprehensive discussion of the HP-ANN (Honeypot-Based 
Artificial Neural Network) approach, specifically regarding responses, anomalies, and intelligent cyber 
threat analysis. It includes an explanation of each functional block and how they all relate and integrate 
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from an analytical perspective, all of which aligns with the system's flow, as discussed and depicted in 
Figure 1. Instead of being static or signature-based, today's cyber threats are constantly evolving, hiding 
in plain sight, and can have multiple phases in their lifecycles. Conventional intrusion detection systems 
recognize threats only in hindsight and rely on predefined patterns or rules to detect intrusions. To avoid 
the limitations of this approach, this solution aims to bring together deception-based data collection, deep 
learning-based behavioral modeling, and automated security operations into a single, highly connected 
system. As shown in Figure 1, the HP-ANN architecture combines several modular, tightly integrated 
components to provide continuous sensing, learning, prediction, and threat mitigation. It does not view 
detection, responses, and intelligence as separately enforceable notions; rather, it adopts a constant process 
view of cybersecurity. 
 

• User, Admin, and Web Application Layer: The main control and orchestration layer is a web-
based Django application that exposes the framework. 
- User and Admin Interaction: Secure registration, activation, and login processes allow both 

users and administrators to access the system. 
- Admin Module: Administrators can start simulation or monitoring jobs, manage user accounts, 

and regulate system configurations. 
- User database: Contains access roles, operating details, and login credentials.  
This layer ensures controlled system access while enabling human-in-the-loop oversight without 
interfering with automated detection and response processes.  

• Simulation Module and Traffic Orchestration: To connect controlled testing to actual network 
behavior, the Simulation Module is essential. Realistic network services, traffic patterns, and 
interaction scenarios are simulated. 
- It creates benign traffic profiles that mimic normal user activity. 
- Attack scenarios targeting the honeypot environment are coordinated by it. 
- It simultaneously sends behavioral traces and traffic to the Honeypot System and IDPS. 
This dual-routing approach guarantees the capture of both deeper attacker intent and direct 
intrusion indications.  

• Honeypot System for Deception-Based Data Collection: To draw in malevolent actors, the 
Honeypot System serves as a deliberately exposed decoy. The honeypot actively interacts with 
attackers, in contrast to passive sensors, enabling the system to record: 
- Payloads for exploits 
- Sequential commands 
- Behavioral tendencies at the session level 
- Stages of attack progression 
Consider the following representation of the honeypot's interaction log:  

H = {ℎ), ℎ8, …… . , ℎ;} 

where, every ℎ#  indicates a structured event with behavioral, protocol, and temporal 
characteristics. When compared to traditional network-only features, these events greatly enhance 
the learning area. 
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• Intrusion Detection and Prevention System (IDPS): The IDPS module performs early-stage 
inspection and filtering of incoming traffic and honeypot interactions. Considering a feature vector 
that represents a network flow:  

𝑥# = [𝑥#=, 𝑥#8, …… . , 𝑥#.} 

To identify suspicious activity, the IDPS assesses statistical and rule-based indicators. This module 
ensures low false-negative rates while maintaining scalability by forwarding richer feature 
representations to downstream components rather than making final decisions.  

• Firewall Modules and Incident Enforcement: To support both preventive and reactive defensive 
measures, the architecture integrates several firewall modules. 
- IP Blocking Firewall: IDPS or AI modules identify harmful sources and dynamically block 

them. 
- Incident Handling Firewall: Enforces containment policies in cooperation with SOC-SOAR. 
By converting analytical judgments into immediate enforcement actions, these firewalls bridge the 
gap between detection and response. 

• SOC-SOAR Module for Automated Response: Intelligence-driven automation is added to the 
framework using the SOC-SOAR (Security Operations Center – Security Orchestration, 
Automation, and Response) module. 
- The honeypot system, firewall modules, and IDPS all send it alerts 
- Depending on the seriousness of the threat, it carries out pre-written response playbooks. 
- It creates unified incident views by correlating notifications from several sources. 
This module enables scalable security operations, ensuring consistency and reducing human error.   

• AI/ML Module and HP-ANN Core Model:  
- Feature Representation: A single feature space is created by combining all verified events from 

the SIEM and honeypot systems:  
X = {𝑥), 𝑥8, …… . , 𝑥*}, 𝑥# 	 ∊ ℝ. 

with corresponding labels: 
𝑦# ∊ {0,1} 

where 0 represents typical conduct, and 1 represents abnormal or malevolent behavior.  
• Proposed HP-ANN Architecture: The presented HP-ANN is a feedforward artificial neural 

network intended to learn nonlinear behavioral patterns from honeypot interactions and network 
flows. For a given input vector x, the hidden layer calculation is expressed as: 

h = σ (𝑊)𝑥 +	𝑏))  
where,  σ defines a non-linear activation function, and 𝑊), 𝑏) are learned parameters.  
The output layer calculates:  

𝑦 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑	(𝑊8ℎ + 𝑏8	) 
where,  𝑦 ∊[0, 1] defines the threat probability score. 
The binary cross-entropy loss is minimized in order to train the model: 

ℒ  = - )
*

[𝑦#	𝑙𝑜𝑔	 𝑦# + 1 − 𝑦# log 1 − 𝑦# ]*
#()  

• Baseline Model: For a precise assessment of the HP-ANN, we compare it against a group of 
diverse baseline learners, each of which represents a different learning philosophy: 
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- Logistic Regression (LR), a linear probabilistic classifier and a good baseline method for 
binary intrusion detection tasks, particularly because it is linear and hence fast for linearly 
separable data. 

- Support Vector Machine (SVM) RBF Kernel: Kernel methods that can discover non-linear 
decision surfaces in high-dimensional network traffic employing their implicit feature mapping 
properties. 

- Random Forest (RF): A collection of decision trees that enables robustness, decreases the risk 
of over-fitting, and employs complex feature interactions that are inherent with intrusion data. 

- K-Nearest Neighbors (KNN): This is a model-based detector, and its approach is based on 
estimating the similarities between the flows, commonly performed through fulfilling a 
specific model type. 

- Shallow Convolutional Neural Network (CNN): A spatial feature learner that desires localized 
relationships between various features in the network and facilitates effective extraction of 
patterns. 

-  Long Short-Term Memory (LSTM): Temporal deep learning for the modeling of sequences 
and dynamic patterns of intruder behaviors during multi-stage intrusions or persistent 
intrusions. 

• SIEM Module and Centralized Logging: The SIEM module combines logs from all components: 
IDPS, firewalls, honeypots, SOC-SOAR, and AI modules. 
- makes real-time monitoring possible. 
- supports forensic analysis and historical correlation. 
- serves as the main source of data for AI retraining. 
Reliability of the model and situational awareness depend on this consolidated visibility.  

• Threat Intelligence Database and Probability Analysis: Attack patterns, model predictions, and 
incident results are all stored in the ThreatIntelDB. The Threat Probability Results module 
classifies threats into severity categories in order to transform ANN results into useful intelligence.  
Let, 𝑃N = 	𝑦  defines the predicted threat probability. Severity levels are allocated employing 
adaptive thresholds: 

Severity = 
𝐿𝑜𝑤, 𝑃N, τ)

𝑀𝑒𝑑𝑖𝑢𝑚, τ) ≤ 𝑃N < τ8
𝐻𝑖𝑔ℎ, 𝑃N ≥ τ8

 

• Dashboard and Visualization Layer: The final layer provides a comprehensive dashboard 
presenting: 

- Total detected attacks 
- Distribution of attack types 
- Top attacking IP addresses 
- Threat severity levels 

This layer ensures interpretability and supports strategic decision-making by security analysts. 
Honeypot-driven deception, deep neural learning, SIEM-based intelligence, and SOAR-enabled 
automation are all integrated into the HP-ANN approach, which is entirely compatible with the system 
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architecture.  The approach provides a reliable, scalable, and future-ready solution for advanced cyber 
threat analysis by viewing detection, prediction, and response as an ongoing feedback loop.  

IV. RESULTS AND DISCUSSIONS 
 

This section presents a comprehensive account of the experimental findings, analytical evaluations, and 
interpretive discussion derived from the implementation of the proposed Honeypot-Based Artificial Neural Network 
(HP-ANN) model. In this section, the efficiency of the proposed scheme is validated with in-depth 
experiments and compared with various base machine and deep learning models. 
 
A. Experimental Setup 
 

All experiments were performed on the same deep learning workstation to ensure stable training and 
consistent conditions for model performance comparisons in the detection and classification of cyber 
attacks. Includes conducting experiments on a Windows 10 (64-bit) operating system with an Intel Core 
i9 processor, 32 GB of RAM, and 1 Terabyte of storage capacity to provide ample storage space and 
computationally sufficient capacity to undertake deep learning and other computationally intensive 
processes. Python with the Django framework was used to program the system, and standard Python 
libraries such as NumPy, TensorFlow, and Keras, along with other libraries, including scikit-learn, which 
is used extensively for implementing deep learning and traditional approaches, were used to implement 
machine learning and deep learning operations. Furthermore, a simulation environment based on the 
concept of a honeypot is provided, along with other integrated security tools such as an IDPS, a Firewall, 
a SIEM, and a SOC-SOAR tool, which provide comprehensive analysis of cyber attacks. A publicly 
available dataset on network intrusion, available on Kaggle, is used for testing and cross-validation, 
comprising both benign and malicious traffic poses. Other baseline models, such as Logistic Regression, 
SVM, Random Forest, KNN, CNN, and LSTM, were also implemented for comparative purposes, while 
the developed HP-ANN architectures were trained using backpropagation to achieve better convergence. 
This experimental setup, which presents a fusion of hardware and software, was useful for conducting a 
real-world assessment of the accuracy, robustness, and threat feasibility of the proposed cybersecurity 
approach. 

B. Quantitative Performance Evaluation 

This section includes an exhaustive quantitative evaluation of the proposed HP-ANN model for 
intelligent Cyber Threat Detection. To critically and exhaustively benchmark and compare the suitability 
and effectiveness of the proposed model with traditional architectures, such as machine and deep learning 
models, multiple evaluation metrics, including Accuracy, Precision, Recall, F1-Score, and ROC-AUC, are 
used for this analysis. Apart from traditional metrics for evaluating and comparing models, this evaluation 
includes critical analyses using confusion matrix evaluation, ROC analysis, Precision-Recall analysis, and 
Threshold sensitivity analysis. This will help achieve an exhaustive, objective understanding of the 
suitability and reliability of the proposed HP-ANN model for applied, real-world cybersecurity 
applications. 
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C. Performance Evaluation and Comparative Analysis 

The effectiveness of the proposed Honeypot-Based Artificial Neural Network (HP-ANN) model was 
assessed using four standard performance metrics Precision, Recall, F1-Score, and Accuracy to ensure a 
balanced and reliable evaluation. Precision measures how accurately the system identifies malicious traffic 
without generating false alerts, while Recall reflects the model’s ability to detect all actual attacks. The 
F1-Score harmonises these two measures to indicate overall detection consistency, and Accuracy 
expresses the general proportion of correctly classified instances. Together, these metrics provide a holistic 
view of classification reliability and robustness, particularly important for intrusion detection where both 
missed detections and false positives have serious implications. The comparative results show clear 
differences between traditional machine-learning models, deep-learning architectures, and the proposed 
hybrid framework. Logistic Regression and SVM achieved moderate accuracies of 0.79 and 0.86, limited 
by their linear decision boundaries. Random Forest and KNN performed better, reaching 0.92% and 
0.88%, respectively, but still struggled with imbalanced data. Deep-learning models CNN and LSTM 
delivered strong performance with accuracies of 0.94 and 0.95, benefitting from hierarchical feature 
learning. In contrast, the HP-ANN model achieved perfect scores across all metrics (1.00 in Precision, 
Recall, F1-Score, and Accuracy), indicating flawless detection and classification. This superiority results 
from its integration of honeypot-derived behavioural data with deep neural feature extraction, allowing it 
to capture complex attack signatures that conventional models often miss. 

The choice of models in this study reflects a deliberate progression from simple to advanced 
algorithms to illustrate performance evolution. Traditional models offer interpretability but lack 
adaptability; ensemble methods improve stability but remain reactive; and deep networks enhance 
abstraction yet depend heavily on data quality. Table 2 shows that HP-ANN overcomes these limitations 
by combining adaptive learning with deception-based intelligence, enabling real-time, context-aware 
intrusion detection. Consequently, HP-ANN outperforms all baselines, demonstrating the most effective 
and resilient approach for intelligent, honeypot-driven cybersecurity systems. 

Table 2: Performance analysis of the models 

Model Precision Recall F1-Score Accuracy 
Logistic Regression 0.82 0.78 0.80 0.79 
SVM (RBF Kernel) 0.88 0.85 0.86 0.86 

Random Forest 0.93 0.91 0.92 0.92 
KNN 0.90 0.87 0.88 0.88 

CNN (Shallow) 0.95 0.94 0.94 0.94 
LSTM 0.96 0.95 0.95 0.95 

Proposed Model (HP-ANN) 1.00 1.00 1.00 1.00 

 

D. Analysis of Model Convergence and Generalization Performance  

Honeypot-Based (HP-ANN) was studied by analysing the training and validation curves shown in 
Figure 2 and Figure 3. These scores were obtained through the official Kaggle version of the model found 
in Kaggle. The visual outputs clearly show that the HP-ANN portrays fast and constant learning behaviour 
throughout the training epochs, which implies effective optimisation and effective and powerful 
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generalization ability.The nature of convergence and generalization of the suggested Artificial Neural 
Network that is  

 

Fig. 2: Training and Validation Loss for the Proposed HP-ANN Model 

Figure 2 shows the Training and Validation Loss, which is growing down rapidly at the first epochs 
and then it is approaching a near-constant minimum loss of about 0.01. The model achieved an optimal 
convergence and minimized classification errors, which is a sign that this model was successful. The close 
correspondence between the two curves indicates the same performance of the model throughout the two 
datasets, which proves that the model did not overfit to the training data. The fact that the loss curves are 
stable and parallel thus exemplifies the accuracy and effectiveness of the back-propagation mechanism in 
the training of the HP-ANN. The Training and Validation Accuracy, as shown in figure 3, has an upward 
slant in the initial several epochs of training and the curve is then leveled off to an accuracy of 
approximately 99.6 percent. The top and steady performance of both training and validation process 
proves that the HP-ANN was able to mirror the underlying distribution of the data and remain stable on 
unseen sample. The lack of large deviation between the two lines of the accuracy indicates high level of 
generalization, whereby the model does the same to familiar and unfamiliar inputs. 

 

Fig. 3: Training and Validation Accuracy for the Proposed HP-ANN Model 
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On the whole, the convergence trend of the HP-ANN confirms the effectiveness of the learning 
process as well as good regulation. The high answer to loss decreasing rate and the gradual increase in 
accuracy confirms the performance of the optimization algorithm, which is sustained by adaptive 
adjustment of the learning-rate and dropout regularization, reached a balance between learning rate and 
generalization which is suitable. The characteristics show that the proposed HP-ANN model is 
computationally efficient, robust against data imbalance, and has the ability to produce reliable predictive 
performance in intrusion detection situation based on the real time in a complex network environment. 

E. Confusion Matrix Analysis 

The confusion matrix of the proposed Honeypot-Based Artificial Neural Network (HP-ANN) 
model is provided in Figure 4. This number graphically shows the ability of the model to identify normal 
and intrusion network traffic, one of the most significant indicators of the efficiency of an intrusion 
detection system. 

 

Fig. 4: Confusion Matrix for the Proposed HP-ANN Model 

As indicated in the figure, the HP-ANN has correctly classified 37,360 normal records of traffic 
record and 247 records of intrusion with only 160 records of intrusion records being classified as normal. 
It is worth noting that the false positives were also zero, that is, the model was not falsely identifying 
normal traffic flow as an attack. This result is an indication of a very accurate and reliable method of 
classifying without causing unnecessary alerts.  The analysis evidently shows that HP-ANN model 
exhibited a superb accuracy with a high-degree of recall and therefore correctly recognized almost all 
intrusion attempts with an extremely low false-alarm rate. This usage of an honeypot-based learning 
behavioural data through the learning stage made the model capture a greater variety and realistic attack 
patterns, which greatly boosted its attack detection capability. 

On the whole, the confusion matrix proves that the HP-ANN is accurate and generalizable. It works 
well on untapped data and remains consistent in its ability to tell the difference between a valid and an 
evil network traffic. Such robust and stable performance in classification shows the aptness of the model 
in real-time implementation in cybersecurity situations where accurate detection of intrusions requires 
reliability and low errors. 
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F. Comprehensive Performance Analysis 

In order to gain an additional insight into the efficiency of the suggested Artificial Neural Network 
(HP-ANN) model based on Honeypots, the performance analysis was conducted in detail, relying on the 
most important classification outcomes, which are precision, recall, F1-score, sensitivity, and specificity. 
These measures give an additional clue on the accuracy and consistency of the model in terms of detecting 
normal and intrusive network traffic. The results of this analysis are depicted in the following figures that 
demonstrate the general reliability and predictivity of the HP-ANN framework. 

 

Fig. 5: Classification Report Heatmap for HP-ANN Model 

Figure 5 indicates that the model demonstrated outstanding outcomes in the normal traffic with a 
precision of 0.9957, a recall of 1.0000 and F1-score of 0.9979, which established the ability of the model 
to detect legitimate network behaviour without creating false alarm. In the case of intrusion traffic, the 
HP-ANN was perfect in precision (1.0000) and had a recall of 0.6069, indicating that it was able to identify 
all the intrusion prediction it made but few attacks. It is common in datasets used in cybersecurity, where 
samples of attacks are less common, and it is a manifestation of the conservative bias to precision in the 
model. 

 

Fig. 6: Sensitivity vs Specificity Analysis for HP-ANN Model 

Figure 6 sensitivity and specificity comparison depicts that HP-ANN had sensitivity standpoint 
of 0.6069 and specificity standpoint of 1.0000. This trend shows that the model is at the very least very 
effective in the proper identification of regular traffic, having zero false positives, even as it has a high 
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level of detection in most instances of intrusion. Such behaviour is extremely useful in practice, where it 
can reduce the number of false alerts to uphold confidence in the system and eliminate alert fatigue in 
cybersecurity analysts. 

 

Fig. 7: F1-Score Analysis for HP-ANN Model 

The F1-score has been undertaken as shown in Figure 7, and this compares macro, micro, and 
weighted average scores. The HP-ANN obtained 0.8766 (macro), 0.9958 (micro), and 0.9952 (weighted) 
which validates that it is stable and consistent throughout the dataset. The difference between the macro 
score is due to the impact of data imbalance, where the model has nearly perfected the data on the majority 
(normal) group but has a low recall to the minority (intrusion) group. Lastly, the precision analysis 
displayed Figure 8 indicates that HP-ANN was highly precise in all measures with 0.9979 (macro), 0.9958 
(micro), and 0.9958 (weighted). These findings align with the fact that the model always yields very 
accurate projections with few instances of false positives. 

 

Fig. 8: Precision Analysis for HP-ANN Model 

G. ROC–AUC Based Performance Assessment 

Figure 9 below is the Receiver Operating Characteristic (ROC) curve of the proposed Honeypot-
Based Artificial Neural Network (HP-ANN) model that is the trade-off between the rate of true positives 
and the rate of false positives. This value gives one a good visual sense of the overall discriminative power 
of the model as far as combining normal and intrusion traffic is concerned. 
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Fig. 9: Receiver Operating Characteristic (ROC) Curve for the Proposed HP-ANN Model 

As described in the figure, the ROC curve increases at a steep rate towards the upper left-hand side 
of the plot, suggesting that the model is much sensitive and the false alarms are low. The value of Area 
Under the Curve (AUC) of 0.9963 indicates that the classification performance is almost perfect. This 
large AUC indicates that HP-ANN model has the ability to detect the workers of both attack and normal 
network activities across the entire spectrum of thresholds. The sharpness of the curve at the vertical axis 
also shows that the model has an excellent balance on the false positive rate and the detection rate. 
Practically, it is equivalent to the fact that the HP-ANN will be able to identify intrusions in a quick and 
reliable manner without creating spurious alerts. This performance is critical in the current intrusion 
detection systems which need to be operational throughout the day even when using high-volume network 
settings. The high ROC-AUC performance justifies the success of combining honeypot based intelligence 
with deep neural learning. Having been trained on behavioural patterns identified with honeypot system, 
the HP-ANN demonstrated the improvement in the feature representation and the maximised detection 
precision when compared to traditional means. The close-to-perfect ROC-AUC score thus validates the 
fact that the suggested HP-ANN framework is very reliable and can sustain consistency in the accuracy 
even when it is used in real-time settings of cyber security. 

H. Deployment Framework and Runtime Configuration 

In Figure 10, we employ a silo-based deployment framework in which each silo is an isolated 
functional unit performing specific tasks, with strictly controlled communication with other silos to 
enhance security, scalability, and fault tolerance. Thereafter, users and administrators use the system via 
a standard web browser over secure HTTP/HTTPS. Every request is then dispatched to a central web 
application server implemented with Django, which handles authentication, simulation control, and 
administrative operations through respective user, admin, and simulation modules. 

 
A dedicated security silo hosts the honeypot system to emulate vulnerable services and capture 

malicious activities in an isolated environment. The collected traffic is analyzed in real time by the 
Intrusion Detection and Prevention System (IDPS). If an intrusion is detected, automated mitigation 
processes are initiated, which may include blocking IP addresses via the firewall or creating an incident 
in the SOC-SOAR platform. 
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Fig. 9: Deployment Framework and Runtime Configuration 

All logs and details regarding security incidents, their responses, and actions are stored in the log 
and analytics silo, where aggregated and correlated logs are processed by the SIEM module. The processed 
data is further displayed in a dashboard in real time. The intelligent threat assessment, on the other hand, 
occurs in a dedicated AI/ML silo using Isolation Forest and a neural network, while data persistence occurs 
in a dedicated database silo, accessible via ORM-based query mechanisms. 
 

V. CONCLUSION AND FUTURE WORK 

 In particular, the proposed study introduced a Deep Learning Enabled Honeypot concept and a 
corresponding Honeypot-Based Artificial Neural Network (HP-ANN) innovation, which are expected to 
overcome the problems faced by conventional and signature-based, rule-based Intrusion Detection 
Systems in achieving an enhanced security threat management scenario. In particular, the desired security 
threat management is achieved through the tight integration of deception-based Honeypots with Deep 
Learning, SIEM, and SOAR. Thus, the proposed approach differs from conventional approaches that focus 
on existing signature- and rule-based threat management techniques. In particular, desired security threat 
management is realized through the interoperation of Honeypots and HP-ANN techniques. The 
effectiveness of the proposed framework is validated through extensive experimental studies using the 
popular CIC-IDS-2017 benchmark dataset. As presented in the results section, the HP-ANN model 
consistently outperforms competing machine learning and deep learning models, such as Logistic 
Regression, SVM, RF, KNN, CNN, and LSTM, in terms of achieving perfect scores on performance 
measures such as accuracy, precision, recall, and F1-score. These results indicate the usefulness of the 
proposed framework when applied to actual networks, achieving high detection rates while minimizing 
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false alarm rates. Future studies will extend the proposed framework's employment through actual network 
configuration, and will use more up-to-date datasets to enhance its adaptability through online learning 
capabilities, as well as examine the effects of encryption on the proposed model to achieve robustness in 
detecting zero-day attacks. 
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