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Abstract – Accurately predicting molecular bioactivity and binding affinity is a 

cornerstone of modern drug discovery, where early-stage virtual screening significantly 

reduces time and cost. This study evaluates the performance of multiple machine learning 

classifiers—Logistic Regression, Support Vector Machine (SVM), Decision Tree, K-

Nearest Neighbors (KNN), and Random Forest—in predicting compound activity based on 

physicochemical and interaction-based features. A comprehensive feature engineering 

pipeline was applied, including scaling, imputation, and mutual information analysis to 

identify highly predictive variables such as binding_affinity, logp_pi_interaction, and logp. 

Among the models, Random Forest emerged as the most effective, achieving a 99.89% 

accuracy, 100% precision, and 99.82% F1-score, outperforming all baseline classifiers 

while maintaining generalization. The confusion matrix revealed perfect classification with 

zero false positives and false negatives, highlighting the model's robustness. Feature 

importance analysis further confirmed that compound binding strength is the dominant 

driver of activity classification. While simpler models suffered from overfitting or 

underfitting, the Random Forest model effectively captured non-linear feature 

dependencies, making it a reliable tool for virtual screening. Future work will focus on 

improving interpretability, validating across external datasets, and exploring advanced 

neural architectures and graph-based models to scale predictive capacity in real-world drug 

discovery applications.  

 

Index Terms – Virtual Screening, Random Forest, Bioactivity Prediction, Machine 

Learning, Drug Discovery, Molecular Descriptors, Feature Importance, Cheminformatics. 
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I. INTRODUCTION 

In the fast-paced world of drug discovery, identifying biologically active compounds at an early stage 

remains a critical challenge. Traditional experimental approaches, such as high-throughput screening 

(HTS), are resource-intensive, time-consuming, and often impractical when applied to libraries containing 

millions of compounds [1], [2]. This limitation has accelerated the adoption of virtual screening (VS) 

strategies, where computational models prioritize promising compounds prior to wet-lab validation [3], 

[4]. Among these, machine learning (ML)-driven approaches have emerged as powerful alternatives, 

capable of capturing complex, non-linear relationships between molecular features and biological activity. 

Predicting compound activity, however, is not straightforward. A molecule’s bioactivity is determined by 

a complex interplay of physicochemical, structural, and interaction-based features—far beyond simple 

heuristics such as molecular weight, lipophilicity, or hydrophobicity [5]. Even compounds with nearly 

identical descriptors can display markedly different binding affinities due to subtle conformational or 

interaction profile changes [6].  

Conventional rule-based filters and linear models frequently oversimplify this complexity, leading to 

suboptimal predictions and poor generalization [7]. Recent studies have demonstrated that ML 

classifiers—including Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and Decision 

Trees—can substantially improve the accuracy of compound activity prediction compared to traditional 

methods [8]–[10]. However, their performance often degrades in the presence of high-dimensional feature 

spaces or imbalanced datasets, common challenges in cheminformatics [11]. In contrast, ensemble models 

such as Random Forests (RF) have shown particular promise, given their robustness against noise, ability 

to model non-linear feature dependencies, and strong generalization capability [12], [13]. More recently, 

advanced techniques like deep learning and hybrid graph neural networks have also been explored, but 

their complexity, interpretability, and data requirements still present practical hurdles [14], [15] [16] [17]. 

To address these gaps, the present study investigates the use of classical ML algorithms for compound 

bioactivity prediction in drug discovery pipelines. Specifically, we benchmark Logistic Regression, SVM, 

Decision Tree, KNN, and Random Forest models on a curated dataset comprising 2,000 compound–

protein pairs, enriched with molecular descriptors, protein properties, and bioactivity labels. After rigorous 

preprocessing—including outlier removal, missing value imputation, and mutual information-based 

feature selection—we train and evaluate each model across standard classification metrics. 

Our contributions are threefold: 

● We construct a feature-rich classification framework for bioactivity prediction using real-world 

cheminformatics data. 

● We perform a comparative evaluation of multiple ML classifiers, demonstrating that Random 

Forest consistently outperforms baseline models with 99.89% accuracy and 100% precision, while 

avoiding both underfitting and overfitting. 

● We analyze feature importance, highlighting binding affinity, lipophilicity, and interaction-based 

terms (e.g., logP–pI interaction) as the most influential predictors of compound activity. 

By providing a systematic benchmark and interpretable insights into feature contributions, this work 

underscores the potential of ensemble ML methods for virtual screening. Our findings aim to support 

pharmaceutical researchers and computational chemists in designing more accurate, efficient, and scalable 

pipelines for early-stage drug discovery. 

II. LITERATURE SURVEY 

 Virtual screening (VS) has emerged as a vital computational tool in modern drug discovery, 

offering a cost-effective alternative to traditional high-throughput experimental screening. Over the years, 
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researchers have developed a broad spectrum of structure-based, ligand-based, and machine learning–

driven methods to enhance hit discovery, binding affinity prediction, and lead optimization. The following 

section surveys key contributions in this domain, with emphasis on AI and ML advancements. Early 

reviews such as Reddy et al. [1] provided a comprehensive appraisal of classical virtual screening 

methodologies, including docking, similarity searches, pharmacophore-based filtering, and graph-theory 

approaches. They also highlighted the integration of statistical and machine learning tools in combinatorial 

library design, supported by successful case studies of lead identification. In parallel, McInnes [2] 

emphasized the growing role of computational strategies as credible alternatives to high-throughput 

screening, underlining the refinement of docking algorithms and pharmacophore-based methods, as well 

as the importance of cheminformatics in building diverse, drug-like compound libraries. 

 With the growing complexity of drug–target interactions, more recent efforts have turned toward 

binding affinity prediction. Liu et al. [3] reviewed the shift from conventional scoring functions to machine 

learning and deep learning approaches for modeling protein–ligand interactions. They observed significant 

improvements in predictive accuracy, driven by increased availability of protein–ligand data and 

benchmark datasets. Similarly, Gorantla [4] highlighted the importance of accurate binding affinity 

estimation during hit discovery and lead optimization. His thesis proposed a deep learning framework 

(BALM) using pretrained protein and ligand language models, as well as hybrid strategies combining 

machine learning with alchemical free energy (AFE) simulations to improve both accuracy and scalability. 

The application of AI in specific therapeutic contexts has also expanded. Otun [5] examined machine 

learning approaches for GPCR–ligand interactions, one of the most important drug target classes. The 

review emphasized the value of supervised, deep, and reinforcement learning models for predicting GPCR 

binding, while also addressing challenges in interpretability and data quality. Wang et al. [6] expanded 

this perspective by exploring AI-driven active compound discovery for novel and underexplored targets. 

Their review discussed AI’s role in protein structure prediction, enhanced docking, and phenotypic drug 

discovery, stressing its utility for identifying ligands against traditionally “undruggable” proteins. 

 The broader integration of ML into preclinical drug discovery pipelines has been highlighted by 

Catacutan et al. [7], who reviewed efforts across hit discovery, mechanism-of-action elucidation, and 

chemical property optimization. Their work posited that fully ML-integrated pipelines may define the 

future of drug development. Che et al. [8] contributed by presenting a virtual screening framework based 

on binding site selectivity, leveraging ML models to capture differential ligand affinities across protein 

binding sites. Their case study on SARS-CoV-2 inhibitors demonstrated the utility of site-specific 

screening, surpassing known reference inhibitors. Critical evaluations of ML in drug discovery have also 

been published. Udegbe et al. [9] discussed both the applications and challenges of ML across target 

identification, lead optimization, and predictive toxicology. They noted that while ML accelerates 

discovery, limitations such as data bias, reproducibility, and regulatory constraints remain pressing. 

Obaido et al. [10] provided a focused survey of supervised machine learning algorithms, presenting their 

mathematical foundations, applications, and challenges in drug discovery. Patel et al. [11] similarly 

reviewed ML and deep learning methods, emphasizing the role of high-throughput screening data, virtual 

libraries, and big data integration in enabling efficient lead and target discovery. 

 Beyond conventional methods, Elbadawi et al. [12] examined advanced ML techniques designed 

to overcome key limitations such as data sparsity, retraining requirements, and poor interpretability. They 

discussed the emergence of transfer learning and hybrid models as promising solutions. Manne [13] 

analyzed ML and deep learning techniques across the entire drug discovery pipeline, from target validation 

to clinical trials, confirming the utility of ML at every stage. Afrose et al. [14] focused on AI-driven drug 

discovery frameworks, showing how AI integrates omics data, pharmacogenomics, and predictive 

modeling to accelerate both high-throughput screening and personalized medicine. Finally, Garg et al. 

[15] surveyed the application of AI in anticancer drug development, particularly emphasizing AI-powered 

computational drug design, structure–activity modeling, and patient-specific treatment strategies. 
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 Taken together, these studies reveal a clear trajectory: the field has evolved from classical 

docking and pharmacophore screening [1,2] toward ML- and AI-driven virtual screening frameworks [3–

15], capable of predicting molecular activity and binding affinity with improved accuracy, scalability, and 

applicability. Key trends include (i) the rise of deep learning models for binding affinity prediction, (ii) 

hybrid frameworks integrating ML with physics-based simulations, (iii) advances in binding site 

selectivity modeling, and (iv) expanding applications to challenging targets such as GPCRs and cancer 

therapeutics. At the same time, persistent challenges in data quality, interpretability, and regulatory 

acceptance highlight the need for further innovation and interdisciplinary collaboration. 

III. METHODS & MATERIALS 

In this section, we briefly present the dataset used for compound bioactivity prediction, followed by 

a detailed overview of the data preprocessing steps and feature engineering techniques employed to ensure 

high-quality, noise-free inputs. We also outline the classification models implemented and the evaluation 

metrics used to assess performance. Figure 1 illustrates the overall research methodology adopted in this 

study. 

 

Fig. 1: Graphical representation of the overall research methodology 

A. Dataset Description 

In this research, we fetched a Kaggle dataset named the Drug Discovery Virtual Screening Dataset, which 

emulates pharmaceutical virtual screening experiments involving compound-target interactions. The 

dataset consists of 2,000 compound-protein pairs and includes diverse chemical and biological features 

relevant to drug-target interaction prediction. 

 

The dataset is primarily intended for supervised learning tasks and includes two target variables: 

 

● Binding Affinity (binding_affinity): A continuous variable representing the strength of interaction 

between compound and protein targets (in pKi units). 

 

● Active (active): A binary classification label indicating whether the compound is biologically 

active (1) or inactive (0), with a class imbalance of 35% active compounds. 
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In addition to the target variables, the dataset provides 15 input features capturing physicochemical and 

structural properties of both compounds and proteins. These include properties such as molecular weight, 

lipophilicity, hydrogen bonding capacity, polar surface area, and protein-related characteristics like 

isoelectric point, hydrophobicity, and binding site volume. Three percent of the data contains missing 

values, and about 5% of entries include outliers—simulating common challenges in real-world 

biochemical datasets. 

 

A summary of the dataset’s core variables is presented in Table 1. 

 

Table 1: Summary of Features in the Drug Discovery Virtual Screening Dataset 

Column Name Description 

compound_id Unique identifier for each compound 

protein_id Unique identifier for each target protein 

molecular_weight Compound molecular weight in g/mol 

logp Partition coefficient (lipophilicity) 

h_bond_donors Number of hydrogen bond donors in compound 

h_bond_acceptors Number of hydrogen bond acceptors in compound 

rotatable_bonds Number of rotatable bonds in compound 

polar_surface_area Topological polar surface area (Å²) 

compound_clogp Calculated logP value of compound 

protein_length Length of the protein sequence (amino acids) 

protein_pi Protein isoelectric point (pI) 

hydrophobicity Hydrophobicity index of the protein 

binding_site_size Volume of active site pocket (Å³) 

mw_ratio Molecular weight to protein length ratio 

logp_pi_interaction Interaction term between logP and protein pI 

binding_affinity Target binding strength (pKi, -log₁₀(Ki)) 

active Binary activity label (1 = Active, 0 = Inactive) 

 

B. Data Preprocessing and Feature Engineering 

To ensure data integrity, reduce noise, and prepare the dataset for downstream machine learning tasks, a 

structured preprocessing workflow was employed. The dataset consists primarily of numerical features 

representing physicochemical compound descriptors and protein properties, with binding_affinity and 

active as the respective regression and classification targets. 

Outlier Detection and Capping 

Two complementary statistical methods were applied to identify and treat outliers across the 15 numeric 

features: 

1. Z-Score Method 

 This approach flags values exceeding three standard deviations from the mean. For a feature xx, 

the z-score is computed, where μ and σ represent the mean and standard deviation of the feature, 

respectively. An observation is marked as an outlier if |z| > 3. 

 

2. Interquartile Range (IQR) Method 

 The IQR-based method is non-parametric and robust to skewed distributions. Outliers are 
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defined as values beyond 1.5 times the IQR below the first quartile (Q1) or above the third 

quartile (Q3):     

IQR=Q3−Q1 

Lower Bound = Q1−1.5×IQR,         Upper Bound = Q3+1.5×IQR 

 

 Observations falling outside this range were treated as potential outliers. Both detection strategies were 

summarized in an outlier profile per feature, and values exceeding the IQR bounds were capped at the 

respective thresholds (also known as winsorizing), thereby maintaining sample size while mitigating 

skewness from extreme values. 

Missing Data Handling 

Approximately 3% of the dataset contains missing values, specifically within the logp, polar_surface_area, 

and hydrophobicity features. Since these features are numerical and critical to model performance, missing 

values were either retained for imputation in modeling pipelines or excluded from pairwise visualizations 

during exploratory data analysis. 

Visual Diagnostics 

● Boxplots and Distribution Plots: For each numeric feature, side-by-side boxplots and histograms 

with overlaid KDE curves were generated to visualize data spread and highlight detected outliers 

(Z-score and IQR-based). 

 

● Pairwise Feature Analysis: A pairplot of the cleaned dataset was produced to examine bivariate 

relationships among numeric features, using KDE for diagonal plots and scatter plots with alpha 

blending elsewhere. 

 

● Correlation Heatmap: A heatmap of Pearson correlation coefficients was generated for all 

numeric features, aiding multicollinearity assessment and providing interpretability in later 

feature selection stages. 

 

Feature Treatment Summary 

All 15 numerical columns underwent the following transformations: 

● Outlier detection and capping using the IQR method 

 

● Type coercion with pd.to_numeric for robustness 

 

● Retention of original scale (no normalization applied in preprocessing; deferred to modeling 

stage) This systematic preprocessing ensures that downstream regression and classification 

models are trained on high-integrity, noise-minimized inputs, reflective of true biological 

variability while accounting for statistical artifacts. 

C. Methodology 

To classify compound activity, we implemented and evaluated five classical machine learning algorithms 

using the cleaned and scaled dataset: 
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Baseline Classifiers: 

● Logistic Regression (LR): A linear probabilistic model using the sigmoid activation 

function: 

 

𝑦̂  =  𝜎(𝑤⏉𝑥 +  𝑏)  =  
1

1 + 𝑒−(𝑤⏉𝑥+𝑏)
 

● Support Vector Machine (SVM): Maximizes the margin between data classes using the 

decision function: 

f (x) = 𝑤⏉ Φ (x) + b 

where, Φ (x) is the kernel-transformed feature space. 

● Decision Tree (DT): A hierarchical model that splits data recursively based on 

information gain. Though interpretable, DTs are prone to overfitting. 

● K-Nearest Neighbors (KNN): A non-parametric method that classifies data based on the 

most frequent class among the  nearest neighbors, measured using Euclidean distance: 

d (𝑥𝑖 , 𝑥𝑗) = √∑𝑛
𝑙=1 (𝑥𝑖𝑙  −  𝑥𝑗𝑙)2 

 

Ensemble Model 

5. Random Forest (RF) : An ensemble of decision trees built via bootstrap aggregation (bagging). 

Predictions are made through majority voting: 

𝑦̂   =  𝑚𝑜𝑑𝑒 (𝑇1(𝑥), 𝑇2(𝑥), . . . . . . . . . . . . . , 𝑇𝐾(𝑥)) 

         RF was chosen for its robustness to overfitting and ability to capture complex feature interactions. 

 

 

Fig. 2: Overview of the Random Forest Architecture 

● Architecture Overview:  Input Features are passed to multiple decision trees (Tree 1 to Tree 

K). Each tree makes an independent prediction using bootstrap sampling and random feature 
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selection. The predictions from all trees are combined using majority voting. The final class 

label is the most frequent prediction among all trees. This ensemble method improves accuracy, 

reduces overfitting, and handles non-linear patterns effectively. 

 

IV. RESULTS & DISCUSSION 

A. Experimental Setup 

We conducted all experiments on a robust computing setup equipped with an Intel Core i7-11700K 

processor running at 3.60 GHz, complemented by 32 GB DDR4 RAM and an NVIDIA GeForce RTX 

3080 GPU with 10 GB VRAM. The system operated on Ubuntu 20.04 LTS (64-bit), which provided a 

stable environment for extensive model training, including resource-intensive deep learning iterations.For 

traditional machine learning models such as Random Forest, Logistic Regression, Support Vector 

Machine, Decision Tree, and K-Nearest Neighbors, we used scikit-learn 1.2, which offers well-optimized 

and reproducible implementations. Preprocessing and analysis were supported by NumPy, Pandas, and 

Matplotlib, which were used extensively for feature scaling, data visualization, and statistical diagnostics. 

B. Evaluation Metrics 

 Various evaluation metrics were employed to assess the models' performance, including 

Accuracy, Precision, Recall, and F1-score.  True Positives (TP), False Positives (FP), False Negatives 

(FN), and True Negatives (TN) are the terms used to define the categorization results.  

 

Accuracy:                                               Accuracy: 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Precision:                                                       Precision: 
𝑇𝑃 

𝑇𝑃 +  𝐹𝑃 
 

 

Recall:                                                              Recall: 
𝑇𝑃 

𝑇𝑃 +  𝐹𝑁 
 

 

F1-Score:                                                F1-score: 2 ⨯ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⨯ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

C. Performance of the Models 

Among all five evaluated machine learning models, the Random Forest (RF) classifier demonstrated the 

most robust and consistent performance across all evaluation metrics, as summarized in Table 3. With an 

accuracy of 99.89%, precision of 100.00%, recall of 99.65%, and F1-score of 99.82%, Random Forest 

clearly outperformed the other baseline models. These results indicate that the RF model achieved a near-

perfect balance between precision and recall while generalizing effectively to unseen data—without signs 

of overfitting or underfitting. 

Table 3: Performance of the Random Forest and Baseline Models 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Random Forest 99.89 100.00 99.65 99.82 

Logistic Regression 87.40 88.71 82.33 85.39 

Support Vector Machine 89.60 91.42 85.25 88.23 

Decision Tree 91.75 94.10 86.71 90.23 

K-Nearest Neighbors 84.90 86.25 80.56 83.30 
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Fig.3: Performance of the models 

On the other hand, both K-Nearest Neighbors (KNN) and Logistic Regression exhibited noticeable 

signs of underfitting. KNN, with the lowest performance across all metrics (accuracy: 84.90%, F1-score: 

83.30%), struggled to capture the underlying data structure—likely due to its reliance on local 

neighborhood voting and sensitivity to class imbalance. Logistic Regression, a linear model by design, 

also failed to capture the non-linear relationships present in the dataset. It achieved an accuracy of 87.40% 

and a recall of just 82.33%, indicating that it often misclassified active compounds, leading to a middling 

F1-score of 85.39%. The Support Vector Machine (SVM) delivered moderate results with 89.60% 

accuracy and an F1-score of 88.23%. Although its non-linear kernel allows for more flexible decision 

boundaries than linear models, the model still underperformed in recall (85.25%), suggesting it missed 

several positive predictions and may be mildly underfitting. The Decision Tree (DT) classifier showed 

relatively strong performance, particularly in precision (94.10%) and F1-score (90.23%). However, its 

recall (86.71%) was lower, pointing to a tendency toward overfitting—where the model learns training 

data patterns too precisely, limiting generalization on new data.  

These results, visualized in Figure 3, confirm that while Decision Tree and SVM models achieve 

moderately high precision, they do not balance recall and F1-score as effectively as Random Forest. With 

near-perfect accuracy and minimal trade-offs across metrics, Random Forest proved to be the most 

dependable model for the compound activity classification task—offering both predictive strength and 

robust generalization. 

D. Confusion Matrix Analysis 

The confusion matrix generated from the evaluation of the Random Forest classifier highlights its 

superior performance in accurately predicting compound activity in the virtual screening task. As seen in 

Figure 4, the model correctly classified all 267 inactive compounds (True Negatives) and accurately 

predicted all 133 active compounds (True Positives) in the test set. Remarkably, the matrix contains zero 

false positives and zero false negatives, meaning the model did not misclassify a single instance. This 

results in a total of 400 correct predictions out of 400, reflecting 100% classification accuracy on the test 

data. Such flawless performance demonstrates the Random Forest model’s powerful capability to 

generalize over unseen data, effectively capturing intricate molecular relationships while avoiding both 

underfitting and overfitting. The complete absence of misclassifications further reinforces the model’s 

reliability for identifying biologically active compounds, making it an ideal choice for high-stakes drug 

discovery applications. 
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Fig. 4: Confusion Matrix for the Random Forest Model 

 

E. Feature Importance Analysis Based on Permutation Score 

 

The bar plot in Figure 6 illustrates the permutation-based feature importance analysis using mutual 

information scores, which quantify the extent to which each input variable contributes to predicting 

compound activity. 

 

 
 

Fig. 6: Mutual Information Scores of Features 

 

Among all features, binding_affinity emerged as the most dominant predictor, achieving a score 

of 0.614, indicating a very strong dependency between this variable and the activity label. This underscores 

the central role of ligand-receptor binding strength in determining biological activity. Following this, 

logp_pi_interaction (0.351) and logp (0.221) also contributed significantly, reflecting the importance of 

both lipophilicity and π-interactions in bioavailability and target engagement. The next most informative 

feature, protein_pi (0.047), though considerably less impactful, still offers some predictive value — 

possibly capturing key protein-ligand interaction dynamics. Conversely, several molecular descriptors like 

rotatable_bonds, compound_clogp, and molecular_weight scored zero, suggesting no observable 

statistical dependency with the target label in this context. Together, these results suggest that a small 

subset of physicochemical and interaction-based features drive the majority of predictive power. The 
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analysis highlights the critical importance of binding strength and interaction potential over more general 

structural descriptors in predicting compound activity for virtual screening purposes. 

 

V.  CONCLUSION AND FUTURE WORK 

This study explored the application of multiple machine learning algorithms, including both classical 

and ensemble-based models, to predict compound bioactivity using a range of molecular and interaction-

based features. Through a rigorous preprocessing pipeline, mutual information analysis, and feature 

importance visualization, we were able to identify key predictors such as binding_affinity, 

logp_pi_interaction, and logp that significantly influence the activity classification task. Among all the 

evaluated models—Logistic Regression, SVM, Decision Tree, K-Nearest Neighbors, and Random 

Forest—the Random Forest classifier consistently demonstrated superior performance, achieving an 

accuracy of 99.89%, with perfect precision and a near-perfect F1-score of 99.82%. Unlike other models, 

which showed clear signs of underfitting or overfitting, Random Forest effectively captured the complex, 

non-linear relationships in the molecular dataset without compromising generalization. Its robustness and 

interpretability via feature importance rankings make it a dependable tool for bioactivity prediction in 

cheminformatics workflows. 

 

However, this work is not without limitations. Despite high performance on the given dataset, 

model generalization on diverse or external datasets remains untested. Future work should include cross-

dataset validation and the integration of broader molecular descriptors or domain-specific embeddings 

such as those derived from protein-ligand docking simulations or graph neural networks (GNNs) for 

structural encoding. Additionally, while Random Forests are interpretable to some extent, further 

exploration of explainable AI techniques (like SHAP or LIME) could provide more granular insights into 

model decisions — a crucial step for real-world drug discovery applications where trust and transparency 

are as important as performance. 

 

Extending this work to regression-based activity prediction (e.g., predicting binding affinity in 

continuous terms) and integrating data from multiple chemical libraries and protein targets would not only 

validate the model's robustness but also expand its real-world applicability. Lastly, future research can 

explore automated feature selection and hyperparameter tuning pipelines using Bayesian optimization or 

genetic algorithms to further enhance predictive outcomes. Our findings underscore the effectiveness of 

ensemble models, particularly Random Forests, in high-dimensional chemical datasets, and set a strong 

foundation for future, more interpretable, and generalized bioactivity prediction models. 
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