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Abstract – Due to the large number of datasets produced by various sensors integrated 

within various IoT (Internet of Things) applications worldwide, multiple-sensor dataset 

fusion has become a major challenge in the modern era. In recent years, researchers have 

developed a variety of solutions for improved data fusion processes for reliable data 

processing in the IoT and wireless sensor networks (WSNs) environments. However, such 

existing models have a variety of limitations due to limited design constraints for data 

processing in IoT-based WSNs. This has indeed been extensively presumed as just the 

robust non-linear system because of high computational complexities generated in response 

within the entire functioning. A meticulous and appropriate methodological solution is 

becoming a difficult task to accomplish. In order to address the aforementioned issues, the 

authors of this article created an improved model by combining the ML (Machine-

Learning) algorithm with the Kalman filter for a more accurate and precise centralized data 

fusion process in the WSNs environment. Furthermore, our developed model is more 

energy efficient than previous models due to its lower computational complexity design. In 

comparison to previous models, the results of the proposed model indicate a gradual 

improvement in overall prediction accuracy. The proposed model includes precision values 

of 97.98 percent, 95.12 percent, 97.18 percent, and 97.84 percent for accuracy, F1-scoring, 

and recall, among other parameters. In terms of performance, all of these parameters 

outperform the previous model. More investigation into this area for performance 

simulation of the system on high volume data sources of sensors in the WSNs scenario is 

possible in the future.  

Index Terms – Internet of Things; Data Fusion; Data Processing; Kalman Filter; Machine 

Learning; Sensor; Wireless Sensor Networks. 
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I. INTRODUCTION  

Context-awareness, which incorporates environmental monitoring and networking connectivity, as well 

as dataset analytics approaches, will enable IoT (Internet of Things) to connect the real and virtual worlds 

over the next several decades. Technology enables a wide range of cutting-edge IoT technologies, such as 

intelligent medical programs, smart transportation technologies, and reasonable and fair power structures, 

including intelligent architecture [1]. Intelligent IoT-rooted services, as well as basic IoT sensing 

technology, are both components of the Distributed system’s integrated approach. This same IoT global 

marketplace anticipates 6.8 billion IoT-rooted applications in 2021, a 22% in crease over 2020. This 

prediction comes from Gartner. The use of developing innovations such as cloud infrastructure and wire 

less network technology is also propelling the global growth of the entire IoT-based marketplace. As a result 

of this growth, the demand for connected IoT equipment and software solutions is rising exponentially [2], 

[3]. 

The primary goals of IoT sensory networking are to (a) sense important datasets from the real-physical 

world outside, (b) sample the overall signals of the internal system, and (c) extracting meaningful datasets 

from sensor data for correct decision making.  The use of a wireless sensor connection by IoT rooted apps 

should be highlighted. Because of their randomly distributed positioning, such WSNs can create ad hoc 

networking without requiring a traditional architecture [4]. Low-cost and low-power devices such as Wi-Fi, 

Bluetooth, Zigbee, Closed Frequency Communication, and many other, support the wireless sensor 

network. 

Nonetheless, such wireless-rooted networks experience difficulties such as inference, dataset loss, 

redundancy, and various dataset creations. It is obvious because basic sensor data from IoT-based sensors 

contains significant amounts of untrustworthy and useless information. As a result, in order to extract useful 

datasets from the cleansed IoT-based sensor datasets, the under- lying sensor datasets must first be cleaned 

up. Furthermore, a restricted IoT-rooted sensor networking may have higher com- puting costs as well as 

asset overuse due to an abundance of un- wanted, including worthless information. The most widely used 

dataset processing methods are dataset denoising, dataset impu- tation, dataset outlier detection, and dataset 

aggregation [5]. 

WSN applications have expanded to include organization, financial, defence, and healthcare fields. 

WSN is currently established to monitor the actual atmosphere as well as find significant occurrences using 

dozens of sensor networks. Tracing frequently encompasses keeping an eye on as well as locating the 

attacker’s location. One of the fundamental issues with WSN is power constraint. Data transfer from sensor 

nodes to base stations consumes the most power instead of data processing. The power consumption 

required to operate sensor networks determines the system longevity. It is indeed impossible to recharge or 

repair the battery of an individual sensing node after it has been installed. The effective use of detector 

power is critical for elongating the total network’s lifespan [6]. This research offers an improvised model 

combining the ML- based algorithm and Kalman Filter for IoT based WSNs data fusion to locate but also 

track mobile targets in sensing net- works. The core of the offered methodology is this cooperative 

clustering and forecasting method. The suggested solution minimizes unnecessary dataset transfers between 

the base station and the sensor network in order to conserve electricity. While the base station location is 

fixed for merely a statistical base station model, this suggested method is tested for both statistical and 



 
 

    
 

301 

mobile base station models that move continuously within the sensor node region. This reduces localization 

errors and finds the exact route to the destination [7]. 

In sensor fusion, two or more datasets are combined to pro- duce a dynamic network evaluation that is 

more accurate, con- sistent, and dependable over time. This estimate gives better results than using the 

detectors separately. The purpose of detector fusing is to decrease cost, device complexities, and element 

count while improving detection accuracy and trust. The dataset sources, which may be computational 

methods or detectors, as well as the system status, may comprise velocity, length, etc. The use of sensory 

fusion is useful for four reasons: (a) it enhances the quality of datasets; (b) it might increase dependability; 

(c) it might measure unmeasured states; and (d) it might broaden the scope of overall coverage [8]. 

In general, dataset fusion strategies can be described as stochastic, analytical, knowledge-rooted, 

comprising judgement as well as argumentation approaches. These probabilistic meth- ods comprise 

Kalman filtering, Bayesian networking, maximal likelihood estimation methods, decision theories, and 

others. Example  of quantitative techniques include covariance, which includes the crossing variance, and 

various statistical studies. Examples include artificial neural networks (ANNs), fuzzy-based reasoning, 

including genetic algorithms, and other knowledge- based methods. Based on this issue characterization, 

the optimum dataset fusion methods should be chosen. Also, the ML- rooted algorithm’s principles and the 

Kalman Filter fundamentals are addressed. 

II. LITERATURE SURVEY 

The application of data fusion techniques is challenging for both scientists and system operators due to 

a number of issues. The untreated defective dataset, which was discussed in an earlier section and whose 

provenance is extremely uncertain and obscure, was the primary cause of the majority of these issues. Every 

network administrator has the challenging task of analysing data from numerous channels and extracting 

information that is useful. The issues with the various datasets fusion system had drawn the attention of 

several scholars. Some academics have recently used a probability strategy leveraging Bayesian networks 

to address this dataset fusion difficulty [9], [10]. 

This method uses the probability density’s function (PDF) to depict the degree of ambiguity present in 

the dataset. Even though one common approach to dealing with ambiguous datasets is effective, it would 

fall short in dealing with other aspects of the dataset’s flaws, such as how to deal with lost dataset samples 

or dataset correlation [11]. In addition, some earlier researchers [12] used fuzzy reasoning to handle 

ambiguous datasets and produce selection criteria for the program’s user. An embedded architecture utilising 

fuzzy-set with datasets fusion was applied [13], [14]to decrease the overall chance of failure in any 

interconnected system components. The primary limitation of fuzzy-rooted systems is that they can only 

merge hazy datasets [15]. 

To address the problem without relying on the probability estimate to classify the datasets, O. Yong 

Kang et al.[16], provided an evidence-based approach. Although other aspects of the dataset's imprecision 

are not discussed, it does allow for the integration of ambiguous and uncertain data. Because of this, it is 

useless to combine severely incompatible datasets [17]. Rough sets were used in the set approximation-

focused techniques used to handle these multimodal datasets [18], [19]. The key advantage of the rough set 

is that no additional or prior understanding of things like databases is required. However, it also necessitates 

some granularity fitting of the data, which lowers its productivity. A key approach for the automatic 
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detection of fake datasets is provided by research that used probabilistic adaptive sensing modelling and 

sensors verification techniques [20]. However, because it was limited to a few simple and well-defined 

previously identified breakdown kinds, this paradigm used to have very limited applications. The authors 

of [21] suggested covariance overlap as yet another crucial undertaking using associated dataset fusion 

techniques. Although it provides better performance, it also provides stricter correlation estimations and 

has a limited application in real-time systems. 

As the network becomes more complex, these dataset fusion algorithms have encountered new issues 

[22], [23]. Every network administrator has to deal with a variety of ambiguities, inconsistencies, and faults 

in the datasets. Once more, finding the effective regulations and figuring out the program's status is a 

difficult work for an administrator. A network administrator may also need prior knowledge about the 

detecting item, such as analytical properties or probability measurements, in order to make an effective 

conclusion [24], [25]. The network has a significant inaccuracy gap as a result of the inefficiency of current 

sensor fusion algorithms. Thus, a number of delicate but increasingly effective strategies using softer 

computing are routinely used nowadays to get around the difficult systematic process. The basic idea behind 

adopting a softer computing platform is indeed to use the training datasets for system classification as well 

as forecasting [26], [27]. 

III. METHDOLOGY 

 Design 

The authors created an improvised model using the ML-based algorithm and the Kalman filter to 

improve the performance limits of the dataset's fusion within the WSNs environment. Figure 1 shows how 

the suggested improvised model is constructed utilizing a Kalman filter for centralized data fusion and an 

improved ML-based method. Several sensors are to be used in various locations in the suggested concept. 

Each sensor is linked to the data centre, which effectively translates the datasets that have been acquired by 

all of the sensors. The data centre uses the WSNs to transmit the obtained dataset to the sink. The term 

"WSNs" refers to spatially dispersed sensor networks that monitor, measure, and translate the collected 

datasets towards a centralized point while also keeping track of the physiological conditions of the entire 

atmosphere.  

 

Fig. 1:  Proposed model using an enhanced ML-based algorithm and Kalman filter for effective data 

fusion. 

These WSNs are capable of measuring the conditions in the atmosphere, including the sound level, the 

overall amount of pollution, the current temperature, and many other factors. Each integrated sensor node 

within the WSNs collects datasets from the installed sensors in real-time and further translates the collected 

data towards a base station that is nearby, also known as the sink. The improved ML-based system has also 
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been used to decision rules and fault forecasts. Next, in the following stage, we included the Kalman filter, 

which further facilitates the efficient fusing of centralized datasets. 

Sensor Data Characteristic 

There are many IoT detectors that offer datasets either continually or in reaction to an outside situation. 

This process entails gathering, aggregating, analysing, and displaying datasets generated by sensor 

networks to provide datasets that may be used. The actual physical, calculable form and a response to the 

external triggers are created after further analysis of this data. Many entities provide datasets in addition to 

those produced by sensing devices. It is necessary to collect and store newly created datasets in an 

unmatched manner in order to analyse existing datasets. They must also be sent to distant locations at a 

specific networking datasets rate. Moreover, there are limitations to that, especially with the peculiarities 

of the sensor dataset. The authors of [28] claim that sensory datasets exhibit informational difficulties as a 

result of factors including their huge size, dynamic, real-time updates, the ageing of significant datasets, 

and the dependency between different dataset sources. The sensors are frequently inserted into objects, 

locations, or people. As a result, the following list contains the essential characteristics of IoT sensing data: 

 Technological Constraints: Due to its compact size, this sensor has limited technological 

capabilities in terms of computer performance, battery life, networking and storage. As a result, 

many detectors are particularly vulnerable to errors, assaults, and even simple malfunctions, 

which can lead to massive sensing losses and inaccurate data. 

 Real-Time Processing of data: The sensing network would be able to do more complex routine 

tasks and instantly transform raw sensory datasets into datasets that are more insightful and 

helpful. 

 Scalability: The datasets for this same sensing network are gathered from a range of sensors and 

processors in the real world. Sensing networks should be flexible to manage the dataset 

processing needs of IoT-rooted applications which allow the exponential growth of processors 

and sensors. 

 Data Representation: Sensor datasets are frequently packaged into a small, tidy packet. There 

are several different types of multiple-sensor datasets that are available, including Boolean 

datasets, binary datasets, featured values, constant data, and numerical values. 

 Heterogeneity: IoT sensor data sets come in a variety. Among the different dataset sources are 

strictly organized datasets, real-time datasets generating information networking, integrated 

sensing devices, community networking multimedia dataset stream, as well as comparative 

participatory sensing channels. 

Data Collection 

The quality and accessibility of sensor datasets, according to researchers from [29], are the main 

problems with IoT-based sensor networks. Such issues are resolved with dataset mining and analysis 

techniques from Sensor, including dataset collecting, dataset administration, information finding, and 

dataset mining. These results, which include decision-making and knowledge development, are attained in 

these fields through the employment of ML and deep learning-rooted models. 
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IoT-rooted sensor datasets require an efficient method for gleaning knowledge from datasets, which is 

why the researchers of [30] investigated the issue. In the context of IoT rooted sensor dataset analytics, 

ML-based models must be performed within the sensors' embedded CPU. Control the properties of real-

time IoT-based sensor datasets; this requires specialized software as well as a strong dataset structure. The 

researchers proposed an improvised model utilizing a Kalman filter and an ML-based algorithm to manage 

the many characteristics of sensor datasets. Moreover, continuous ML based algorithms, real-time hardware 

and software coordination, as well as the categorization of output datasets for IoT-rooted applications, were 

utilized. Table 1 illustrates the selected stimulation parameters. 

Table 1: Illustrates the selected simulation Parameters 

Sl. No. Selected Parameters Corresponding value 

1 Size of the area 300×300 m2 

2 Sensing nodes {50, 100, 150, 200, 300, 500} 

3 Threshold limit δ 100m 

4 Base station coordinates 50, 50 

5 Coverage of sensing 100m 

6 Range of Communications 150m 

7 Beginning energy 1.5 J 

8 Speed of the Target 0−50 m/s 

 

Enhanced ML-based Algorithm 

Step 1: Let FS be the group of Fp nodes of the sensor, which are to be deployed within specified sensor 

networks as well as the base station is positioned over coordinates (50, 50), within the WSNs environment.  

FS = {FS1, FS2, FS2, FS3 … … … . . FSFp}  (1) 

Step 2: If any selected target is to be determined inside the overall sensing coverage area of the sensing 

node, in such a case, a particular sensor node immediately translates the original position of the base station 

via the cluster head.  

Step 3: Now, the base station forecasts the subsequent position Fxk+1(FPL) target utilizing the following 

equation. 

Cost (Fkk,Fr) =
1

FN
 ∑ FvrFrFk

FTFN
Fk=1 + log |Fr|  (2) 

Fvr = Fzk − FHFrFxFk    (3) 

Step 4: In this step, the base station translates the predicted position to the activated clustering head. The 

activated clustering head chooses 3 sensing nodes (FSq) in proximity to the target predicted position. 

FSq = {FSq1, FSq2, FSq3}, FSq ⊆ FS  (4) 

Step 5: Next, the clustering head chooses leader nodes FSL ∈ FSq having a greater chosen ratio (FCR) 

of the energy of residual (FE) as well as via (Fd) from specified targets, 
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FCR =
FE

Fd
     (5) 

Step 6: In this step, overall chosen nodes {∀FSq|FSq ∈ {FSq1, FSq2, FSq3} & FSq ≠ FSL}, determine 

overall distance Fd via chosen target as well as translate this towards leading nodes i.e., FSL. 

Step 7: Now, in this subsequent step, the leading node i.e., FSL estimate the overall target present 

position utilizing the datasets acquired via 2 chosen nodes as well as its contained datasets. 

Step 8: Later, the activated clustering head estimates alteration between the predicted position as well 

as the present position. This equivalences it along with the pre-set threshold limit δ. 

 If |Predicted Location-Current Location| > δ 

  FCH translates FCL to the base station. 

 Else 

  None datasets translated via clustering head 

  The base station saves the predicted location 

 End if 

Step 9: Now again, recurrence of the third step to the eight steps till when the target is to be determined 

inside the network coverage arena for each 0.7 sec.  

IV. RESULTS AND DISCUSSION 

The section demonstrates the consequences of mathematical experimentations. The performance 

computation of the aforementioned ML algorithm has been assessed utilizing MATLAB for a statistical 

base station prototypical as well as also for a cellular model. Nowadays, effective data fusion is 

continuously becoming a huge concern in IoT-based WSNs environments. The developed model 

constructed in the previous years has major limitations at present because of the computing complexity and 

many other reasons such as low accuracy etc. In this research work, the researchers developed another 

novel improvised model by utilizing the ML-based algorithm as well as the Kalman Filter.  

 

Fig. 2: Illustrates the overall network residual energy (in J) for the proposed model and the existing 

model. 
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Figure 2 illustrates the overall network residual energy (in J) for the proposed model and existing L. 

Zhou et al. model [31]. The overall network residual energy of the existing L. Zhou et al. Model [31], which 

shows that proposed model proficient in the modern real time applications based on the IoT-based WSN 

environment.  

 

Fig. 3: Network lifetime for the proposed model and existing model. 

Table 2: Illustrates the parametric comparison of the suggested model with the existing model.  

Sl. No. Name of the Model Accuracy (%) F1-score (%) Recall (%) Precision (%) 

1 L. Zhou et al. [31] 88.99 89.88 90.45 91.22 

2 Proposed Model 98.36 96.36 97.78 98.22 

 

Figure 3. Illustrates the overall selected network lifetime for the proposed model and existing L. Zhou 

et al. model [31]. The existing model offers the continuous variable network lifetimes on diverse selected 

nodes. In the proposed model on chosen nodes 100, 200, 300, 400, 500, 600, and 700, the measured network 

lifetime (in a sec) is to be found constant is 60 seconds, which is optimal and pragmatic in comparison with 

the existing model. Table 2 illustrates the parametric comparison of the suggested model with existing 

model L. Zhou et al. [31]. A parametric comparison is done of our suggested model with the existing model 

to assess diverse performance parameters effectively. For the existing L. Zhou et al. [31] model, the 

accuracy, F1-score, recall, and precision values are measured at 88.99%, 89.88%, 90.45%, and 91.22%, 

respectively. While the proposed model offers diverse parameters such as accuracy, F1-scoring, recall, and 

the precision values of 98.36%, 96.36%, 97.78%, and 98.22%, respectively, which are optimal and 

improved in comparison with the existing model. 

All the outcomes have been measured as well as validated with greater precision as well as accurateness 

for performance computation of the suggested model and each measured parametric value is measured with 

existing models for comparative analysis of the proposed model. After the comparison, it is to be found 

that the suggested model all performance parameters are pragmatic and enhanced in comparison with the 

existing model.   
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V. CONCLUSION 

The data processing, data fusion, and sensor integration Dataset analytics grow increasingly advanced 

as a result of the paradigm change in IoT-based sensor networks towards future technologies like the cloud, 

fog, and edge computing. Due to the excessive development of heterogeneous datasets from several sensors 

incorporated into contemporary real-time applications, the fusion of datasets is now a serious problem. 

Many models that can be used in IoT-based applications have previously been proposed by different 

authors. However, these current models have a number of drawbacks, including a lower degree of accuracy 

and precision, which is a major worry and needs increased focus on the creation of new models. The 

outcome of the suggested model demonstrates that the suggested model is more pragmatic and improved 

in terms of various performance constraints such as accuracy along with precision. Future study in this area 

for efficiency calculation of the algorithm on large quantity datasets of the sensors under WSNs 

environment is possible.  
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