Vol. 4 No. 1 (2025): January
RESEARCH ARTICLES

Enhancing Digital Circuit Performance Using Memristor-Inspired Amplifiers

Thamatam Venkata Chalama Reddy
Department of Electronics and Communication Engineering, Sri Sai Institute of Technology and Science, Rayachoty, Annamayya, India
Aliginti Karunakar
Department of Electronics and Communication Engineering, Sri Sai Institute of Technology and Science, Rayachoty, Annamayya, India

Published 2025-04-02

Keywords

  • CMOS,
  • Memristor,
  • digital logic circuits,
  • VTEAM model

How to Cite

Thamatam Venkata Chalama Reddy, & Aliginti Karunakar. (2025). Enhancing Digital Circuit Performance Using Memristor-Inspired Amplifiers. International Journal of Computational Learning & Intelligence, 4(1), 343–358. https://doi.org/10.5281/zenodo.15123613

Abstract

In this paper, we present the design, implementation, and evaluation of digital logic circuits using Memristor-based technology. The focus is on basic gates, a 2 × 1 multiplexer (MUX), a full adder, a full subtractor, and an amplifier, all implemented using the Cadence Virtuoso platform. The Memristor model employed here shows significant improvements in power efficiency, area reduction, and speed compared to traditional 45-nm CMOS technologies. Our results demonstrate that Memristor-based circuits can achieve up to 71.4% reduction in area, 40% reduction in power consumption, and 54% reduction in delay, highlighting the potential of Memristor technology for future low-power, high-performance digital systems.

References

  1. Nawaria, M., & Kumar, S. (2024). Memristor-inspired digital logic circuits and comparison with 90-/180-nm technologies. IEEE Transactions on Electron Devices, 71(1).
  2. Liu, G., Shen, S., Jin, P., Wang, G., & Liang, Y. (2021). Design of Memristor-based combinational logic circuits. Circuits, Systems, and Signal Processing, 40(12), 5825–5846.
  3. Mandal, S., Sinha, J., & Chakraborty, A. (2019, March). Design of Memristor–CMOS based logic gates and logic circuits. In 2019 2nd International Conference on Innovations in Electronics, Signal Processing and Communication (IESc) (pp. 215–220). IEEE.
  4. Kvatinsky, S., Satat, G., Wald, N., Friedman, E. G., Kolodny, A., & Weiser, U. C. (2013). Memristor-based material implication (IMPLY) logic: Design principles and methodologies. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(10), 2054–2066.
  5. Xie, L., Du Nguyen, H. A., Yu, J., Kaichouhi, A., Taouil, M., AlFailakawi, M., & Hamdioui, S. (2017, July). Scouting logic: A novel Memristor-based logic design for resistive computing. In 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (pp. 176–181). IEEE.
  6. Mukherjee, S. (2024, June). Memristor-based efficient combinational circuit designs using material implication. In 2024 International Conference on Circuit, Systems and Communication (ICCSC) (pp. 1–5). IEEE.
  7. Fahmy, G. A., & Zorkany, M. (2021). Design of a Memristor-based digital to analog converter (DAC). Electronics, 10(5), 622.
  8. Reddy, P. P., Abhitej, V., Sai Pavan, G., & Padmini, C. (2024). A design of carry-look ahead adder with improvised Memristor modeling. International Journal of Research in Engineering and Science (IJRES, 9).
  9. Kvatinsky, S., Talisveyberg, K., Fliter, D., Kolodny, A., Weiser, U. C., & Friedman, E. G. (2012, November). Models of Memristors for SPICE simulations. In 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel (pp. 1–5). IEEE.
  10. Jiang, F., Yuan, F., & Li, Y. (2022). Design and implementation of XOR logic circuit based on generalized Memristor. The European Physical Journal Special Topics, 231(3), 481–491.
  11. Soni, K., & Sahoo, S. (2024). Highly accurate Memristor modeling using MOS transistor for analog applications. Multimedia Tools and Applications, 1–16.
  12. Su, B., Cai, J., Zhang, Y., Wang, Y., Wang, S., & Wen, K. (2023). A 1T2M Memristor-based logic circuit and its applications. Microelectronics Journal, 132, 105674.
  13. Song, Y., Wu, Q., Wang, X., Wang, C., & Miao, X. (2021). Two Memristors-based XOR logic demonstrated with encryption/decryption. IEEE Electron Device Letters, 42(9), 1398–1401.
  14. Singh, A. (2020). Design and analysis of Memristor-based combinational circuits. IETE Journal of Research, 66(2), 182–191.
  15. Ahmed, S. T., Ashwini, S., Divya, C., Shetty, M., Anderi, P., & Singh, A. K. (2018). A hybrid and optimized resource scheduling technique using map reduce for larger instruction sets. International Journal of Engineering & Technology, 7(2.33), 843-846.
  16. Al Ayubi, N. Z. H., & Mishra, P. K. (2024). Memristor modeling for common source amplifier using 180nm technology. Journal of VLSI Design Tools & Technology.
  17. Karima, N. N., & Bhuyan, M. H. (2023). Design process, simulation, and analysis of a common source MOS amplifier circuit in Cadence at 45 nm CMOS technology node. IOSR Journal of VLSI and Signal Processing (IOSR-JVSP, 2), 19–25.
  18. Mbarek, K., Rziga, F. O., Ghedira, S., & Besbes, K. (2020, June). Design and properties of logic circuits based on Memristor devices. In 2020 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS) (pp. 1–5). IEEE.
  19. Paramasivam, K., Nithya, N., & Nepolean, A. (2021, October). A novel hybrid CMOS-Memristor based 2-bit magnitude comparator using Memristor ratioed logic universal gate for low power applications. In 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA) (pp. 1–5). IEEE.
  20. Maity, I. (2024). Cadence Virtuoso based circuit simulation of universal logic gates: A board tutorial.
  21. Weste, N. H., & Harris, D. (2015). CMOS VLSI design: A circuits and systems perspective. Pearson Education India.
  22. Mano, M. M., & Clietti, D. (2024). Textbook of digital design with an introduction to the Verilog HDL, VHDL, and System Verilog. Pearson Publications.
  23. Wang, J., et al. (2017). Memristor-based logic design. IEEE Transactions on Electron Devices, 64(7), 2909–2915.
  24. Ahmed, S. T., Kumar, V. V., Singh, K. K., Singh, A., Muthukumaran, V., & Gupta, D. (2022). 6G enabled federated learning for secure IoMT resource recommendation and propagation analysis. Computers and Electrical Engineering, 102, 108210.
  25. Bhavatarini, N., Basha, S. M., & Ahmed, S. T. (2022). Deep learning: Practical approach. MileStone Research Publications.
  26. Ahmed, S. T., Priyanka, H. K., Attar, S., & Patted, A. (2017, June). Cataract density ratio analysis under color image processing approach. In 2017 International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 178-180). IEEE.
  27. Ragaventhiran, J., Vigneshwaran, P., Kodabagi, M. M., Ahmed, S. T., Ramadoss, P., & Megantoro, P. (2022). An unsupervised malware detection system for windows based system call sequences. Malaysian Journal of Computer Science, 79-92.