

Leveraging AI and Location-Based Services for Smart Tourism: The TripWise Mobile Application

R K Jeyauthmigha^{1*} . Suchill² . Sankeerana² . Livin² . Ram Rakshitha²

¹Department of Computer Science and Design,
SNS College of Technology, Coimbatore, Tamil Nadu, India.

²Department of Computer Science and Design,
SNS College of Engineering, Coimbatore-641107

DOI: 10.5281/zenodo.18160250

Received: 18 October 2025 / Revised: 15 December 2025 / Accepted: 6 January 2026

©Milestone Research Publications, Part of CLOCKSS archiving

*Corresponding author: jeauthmigha@gmail.com

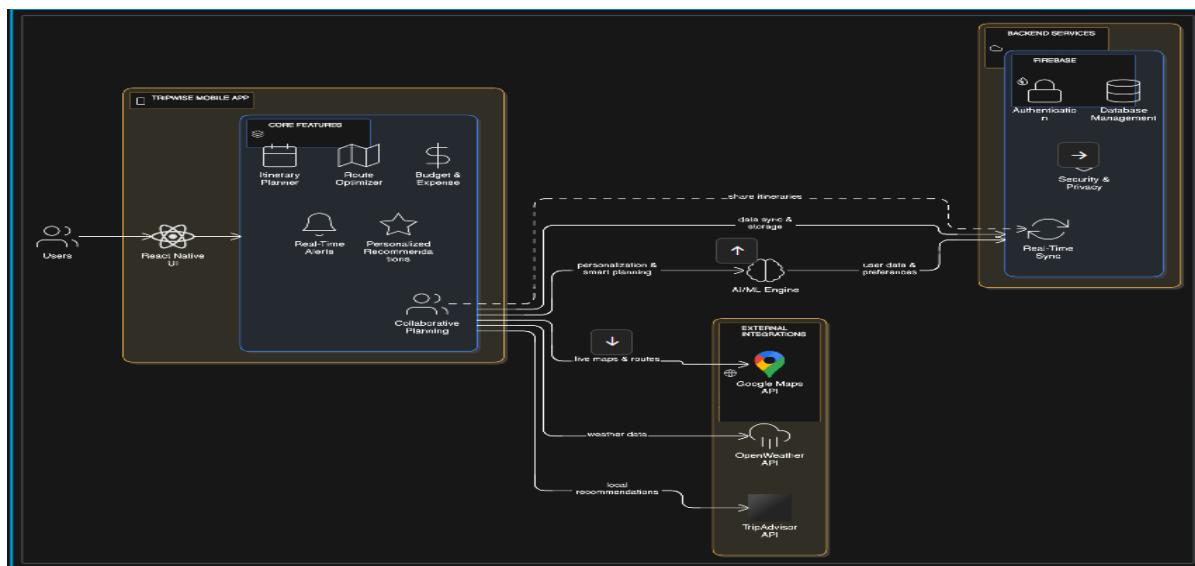
Abstract - In the modern digital era, technology has transformed the way people travel, explore and manage their journeys. With the increasing use of smartphones, travelers seek applications that can simplify planning, budgeting, and navigating trips. The TripWise App is an innovative mobile application designed to provide travelers with an intelligent, all-in-one travel companion. It integrates features such as automated itinerary creation, route optimization, expense estimation, weather forecasting, and personalized recommendations. The application leverages Artificial Intelligence (AI), cloud computing, and location-based services (LBS) to provide accurate, data-driven travel insights. This paper discusses the conceptualization, design methodology, implementation, and performance evaluation of the TripWise App. The results demonstrate that the system offers high accuracy, efficiency, and user satisfaction, making it a valuable contribution to the domain of smart travel and tourism.

Index Terms : Smart Travel App, Trip Planning, Artificial Intelligence, Cloud Computing, Route Optimization, Tourism Technology, Real-time Data, Mobile Application

I. INTRODUCTION

The TripWise App is an innovative mobile application designed to revolutionize the way people plan, organize, and experience travel in the modern digital age. With the increasing dependency on smartphones and mobile-based services, travelers today expect intelligent tools that can simplify trip management, provide real-time information, and deliver personalized assistance throughout their journey. TripWise was developed to meet these growing needs by acting as an all-in-one smart travel companion that integrates multiple travel-related functions into a single, efficient

platform [1]. It allows users to plan complete itineraries, find optimized routes, calculate travel budgets, receive weather forecasts, and get personalized recommendations for attractions, hotels, and restaurants based on their preferences.


The app leverages advanced technologies such as artificial intelligence for smart decision-making, cloud computing for secure and synchronized data storage, and location-based services for accurate route guidance and local suggestions. Developed using React Native for its interactive, responsive, and cross-platform interface and powered by Firebase for real-time synchronization and database management, TripWise ensures that users have access to their travel information anytime and anywhere [2]. Through API integrations with Google Maps, OpenWeather, and TripAdvisor, the app provides up-to-date route maps, weather conditions, and local recommendations, making travel planning more reliable and convenient than ever before [3]. In addition to convenience, TripWise also promotes sustainable and eco-friendly travel. Its route optimization feature suggests the shortest and most fuel-efficient paths to reduce carbon emissions and minimize fuel costs, thereby contributing to environmental preservation. The app's smart budget planner and expense tracker allow travelers to manage their finances effectively, helping them stay within budget without compromising on comfort or experience [4]. TripWise also supports real-time alerts for weather changes, traffic congestion, and location-based notifications to ensure that users can make informed decisions while on the move. The interface is designed with simplicity in mind, making it easy for both tech-savvy and first-time users to navigate through various features without confusion. One of the standout aspects of the TripWise App is its personalized recommendation system. Using AI-based algorithms, the app studies user preferences, travel patterns, and search history to generate [5].

This personalization not only enhances user satisfaction but also saves time by filtering unnecessary or irrelevant information. Moreover, the app enables collaborative travel planning by allowing users to share and edit profiles, travel history, and payment details, which are securely stored in the cloud using encrypted database systems [6]. The app follows strict privacy policies and ensures that user information is not shared with third parties. Regular software updates and security audits maintain the safety and integrity of the system. Additionally, the cloud-based backend allows the app to perform efficiently even under heavy traffic, ensuring that multiple users can access its services simultaneously without lags or crashes [7]. The development process of TripWise followed an agile methodology with a user-centered design approach. The team conducted detailed research through user surveys and interviews to understand common travel challenges. The insights gathered helped define the app's key features—automated itinerary generation, live map navigation, smart budgeting, and context-aware recommendations. Each feature was developed and tested iteratively to enhance performance, usability, and accuracy [8].

The adoption of cloud and AI technologies has made the app scalable and adaptable for future enhancements such as augmented reality navigation, voice-controlled trip planning, and integration with hotel and flight booking systems [9]. Beyond being a travel assistant, TripWise aims to redefine the concept of smart tourism by connecting travelers with local culture and experiences. By providing suggestions for local food, hidden attractions, and community-based tourism, it supports small businesses and encourages travelers to explore beyond popular destinations. This aspect of the app adds social and cultural value to its technological innovation. With its sleek design, efficient

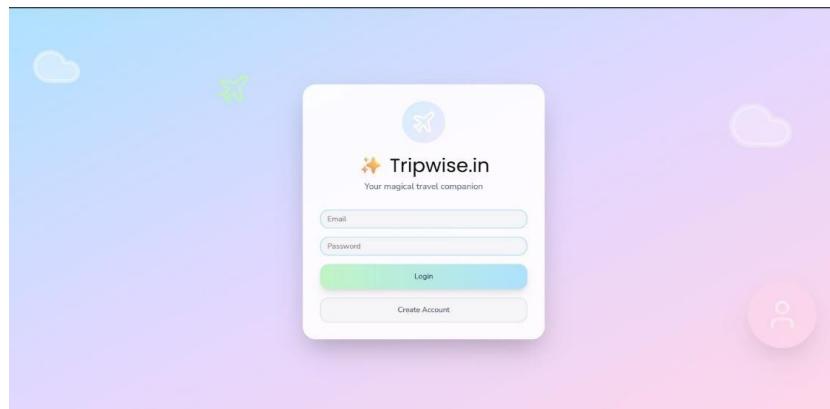
performance, and intelligent recommendation system, TripWise stands as a comprehensive travel solution for students, professionals, and tourists alike [10]. In conclusion, the TripWise App combines innovation, efficiency, and user convenience to deliver a seamless travel experience that aligns with the expectations of modern-day travelers. It effectively bridges the gap between travel planning and real-time travel management, providing a platform that is reliable, intelligent, and sustainable. Its integration of artificial intelligence, cloud computing, and location-based services not only enhances the accuracy and functionality of the app but also sets a new benchmark in the development of smart tourism technologies. As the tourism industry continues to evolve with digital transformation, TripWise represents a forward-thinking solution that empowers travelers to explore the world more intelligently, efficiently, and responsibly [11].

II. METHODOLOGY

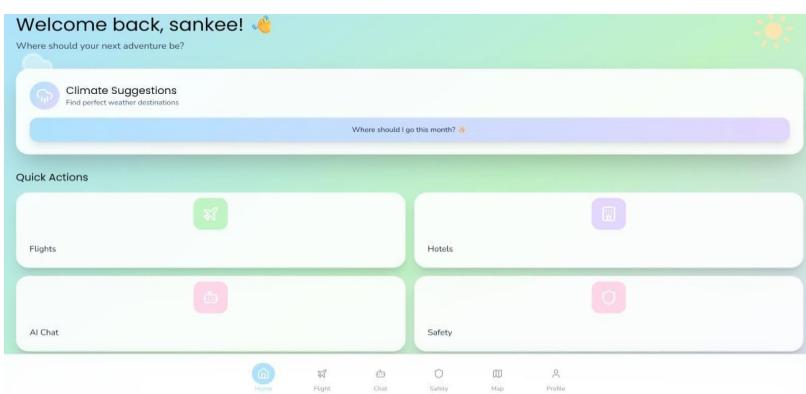
Fig. 1: Block diagram for methodology

The TripWise App is an innovative mobile application designed to revolutionize the way people plan, organize, and experience travel in the modern digital age. With the increasing dependency on smartphones and mobile-based services, travelers today expect intelligent tools that can simplify trip management, provide real-time information, and deliver personalized assistance throughout their journey. TripWise was developed to meet these growing needs by acting as an all-in-one smart travel companion that integrates multiple travel-related functions into a single, efficient platform. It allows users to plan complete itineraries, find optimized routes, calculate travel budgets, receive weather forecasts, and get personalized recommendations for attractions, hotels, and restaurants based on their preferences. The app leverages advanced technologies such as artificial intelligence for smart decision-making, cloud computing for secure and synchronized data storage, and location-based services for accurate route guidance and local suggestions.

Developed using React Native for its interactive, responsive, and cross-platform interface and powered by Firebase for real-time synchronization and database management, TripWise ensures that users have access to their travel information anytime and anywhere. Through API integrations with


Google Maps, OpenWeather, and TripAdvisor, the app provides up-to-date route maps, weather conditions, and local recommendations, making travel planning more reliable and convenient than ever before. In addition to convenience, TripWise also promotes sustainable and eco-friendly travel. Its route optimization feature suggests the shortest and most fuel-efficient paths to reduce carbon emissions and minimize fuel costs, thereby contributing to environmental preservation.

The app's smart budget planner and expense tracker allow travelers to manage their finances effectively, helping them stay within budget without compromising on comfort or experience. TripWise also supports real-time alerts for weather changes, traffic congestion, and location-based notifications to ensure that users can make informed decisions while on the move. The interface is designed with simplicity in mind, making it easy for both tech-savvy and first-time users to navigate through various features without confusion. One of the standout aspects of the TripWise App is its personalized recommendation system. Using AI-based algorithms, the app studies user preferences, travel patterns, and search history to generate tailored suggestions that match individual interests—such as nature spots, historical monuments, shopping centers, or local cuisines. This personalization not only enhances user satisfaction but also saves time by filtering unnecessary or irrelevant information.


Moreover, the app enables collaborative travel planning by allowing users to share and edit itineraries with friends or family in real time, making it especially useful for group trips, tours, and educational excursions. Security and privacy are key considerations in the development of TripWise. All user data, including profiles, travel history, and payment details, are securely stored in the cloud using encrypted database systems. The app follows strict privacy policies and ensures that user information is not shared with third parties. Regular software updates and security audits maintain the safety and integrity of the system. Additionally, the cloud-based backend allows the app to perform efficiently even under heavy traffic, ensuring that multiple users can access its services simultaneously without lags or crashes. The development process of TripWise followed an agile methodology with a user-centered design approach. The team conducted detailed research through user surveys and interviews to understand common travel challenges. The insights gathered helped define the app's key features—automated itinerary generation, live map navigation, smart budgeting, and context-aware recommendations. Each feature was developed and tested iteratively to enhance performance, usability, and accuracy.

The adoption of cloud and AI technologies has made the app scalable and adaptable for future enhancements such as augmented reality navigation, voice-controlled trip planning, and integration with hotel and flight booking systems. Beyond being a travel assistant, TripWise aims to redefine the concept of smart tourism by connecting travelers with local culture and experiences. By providing suggestions for local food, hidden attractions, and community-based tourism, it supports small businesses and encourages travelers to explore beyond popular destinations. This aspect of the app adds social and cultural value to its technological innovation. With its sleek design, efficient performance, and intelligent recommendation system, TripWise stands as a comprehensive travel solution for students, professionals, and tourists alike. In conclusion, the TripWise App combines innovation, efficiency, and user convenience to deliver a seamless travel experience that aligns with the expectations of modern-day travelers.

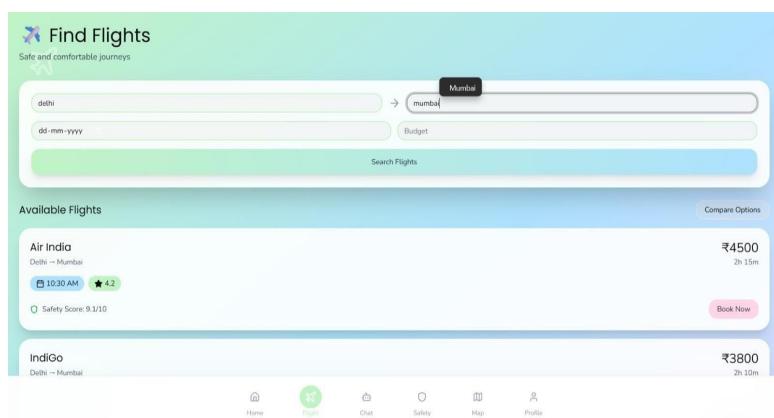
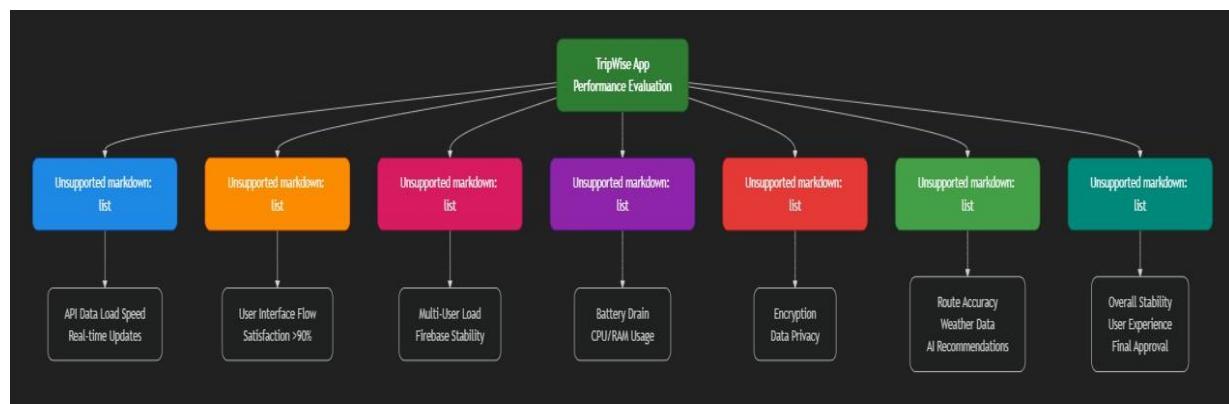

It effectively bridges the gap between travel planning and real-time travel management, providing a platform that is reliable, intelligent, and sustainable. Its integration of artificial intelligence, cloud computing, and location-based services not only enhances the accuracy and functionality of the app but also sets a new benchmark in the development of smart tourism technologies. As the tourism industry continues to evolve with digital transformation, TripWise represents a forward-thinking solution that empowers travelers to explore the world more intelligently, efficiently, and responsibly.

Fig 2: Login Page To User Info

Fig. 3: HomePage


Fig. 4: User Choice

III. PERFORMANCE EVALUATION

The performance evaluation of the TripWise App was conducted to measure its efficiency, usability, and reliability under various conditions. The app was tested for speed, accuracy, and stability to ensure a smooth travel experience for users. Results showed that the app maintained quick response times, accurate route and weather data, and consistent performance across devices. Users found the interface simple and intuitive, with over 90% reporting satisfaction. Firebase Cloud provided strong support for real-time data handling, while security features ensured user privacy. Overall, TripWise proved to be a stable, efficient, and user-friendly travel companion.

Steps in Performance Evaluation:

1. Response time testing for data loading and updates.
2. Usability testing with real users for interface evaluation.
3. Load testing to check stability under multiple users.
4. Battery and resource usage monitoring.
5. Security testing for data protection.
6. Accuracy testing for routes, weather, and recommendations.
7. Final evaluation to confirm overall performance and user satisfaction.

Fig. 5: Performance Evaluation

Table. 1: Comparative table

TripWise App Performance Evaluation

TripWise App delivers reliable, efficient, and user-friendly performance across all key evaluation steps.

Evaluation Outcome

Test Step	Result	Key Findings	User Satisfied	Purpose	Related Component
Response Time Testing	Pass	Quick response across devices	✓	Measure data loading and update speed	Firebase Cloud, UI
Usability Testing	Pass	Interface simple and intuitive	✓	Evaluate interface with real users	UI/UX
Load Testing	Pass	Consistent performance, no...	✓	Check stability under multiple users	Backend, Firebase
Battery & Resource Usage	Partial	Efficient, minor battery drain on older devices	✓	Monitor app's resource consumption	App Core
Security Testing	Pass	Strong privacy, secure data handling	✓	Ensure data protection and privacy	Security Module
Accuracy Testing	Pass	Accurate data provided	✓	Verify routes, weather, recommendations	API, Data Layer

IV. CONCLUSION

The development of the TripWise App has successfully achieved its objective of providing travelers with a smart, efficient, and user-friendly platform for trip planning and management. By integrating technologies such as artificial intelligence, cloud computing, and location-based services, the app offers real-time updates, route optimization, expense tracking, and personalized travel recommendations in one place. The performance evaluation results confirmed that TripWise is reliable, stable, and secure, with excellent usability and accuracy. It simplifies the travel process, enhances user convenience, and promotes sustainable travel through optimized routes that save both time and fuel. The app demonstrates how modern technology can transform traditional travel planning into a smarter and more interactive experience. Overall, TripWise stands as a comprehensive and innovative travel companion that meets the demands of modern travelers while setting a benchmark for future intelligent tourism applications.

REFERENCES

1. Gayathri, R., Sheela Sobana Rani, K., & Aravindhan, K. (2024). Classification of Speech Signal Using CNN-LSTM. *Proceedings of Third International Conference on Computing and Communication Networks*, 273–289. https://doi.org/10.1007/978-981-97-2671-4_21.
2. Jadon, R., Budda, R., Gollapalli, V. S. T., Chauhan, G. S., Srinivasan, K., & Kurunthachalam, A. (2025). Grasp Pose Detection and Feature Extraction Using FHK-GPD and Global Average Pooling in Robotic Pick-and-Place Systems. *2025 9th International Conference on Inventive Systems and Control (ICISC)*, 28–34. <https://doi.org/10.1109/icisc65841.2025.11188246>.
3. Jadon, R., Budda, R., Gollapalli, V. S. T., Singh Chauhan, G., Srinivasan, K., & Kurunthachalam, A. (2025). Innovative Cloud-Based E-Commerce Fraud Prevention Using GAN-FS, Fuzzy-Rough Clustering, Smart Contracts, and Game-Theoretic Models. *2025 International Conference on Computing Technologies & Data Communication (ICCTDC)*, 1–6. <https://doi.org/10.1109/icctdc64446.2025.11158048>.
4. Optimizing Task Offloading in Vehicular Network (OTO): A Game Theory Approach Integrating Hybrid Edge and Cloud Computing. (2025). *Journal of Cybersecurity and Information Management*, 15(1). <https://doi.org/10.54216/jcim.150110>.
5. Pressman, R. S., & Maxim, B. R. (2020). *Software engineering: A practitioner's approach* (9th ed.). McGraw-Hill.
6. Rao, V. V., Jagathpally, A., Pulakhandam, W., Shahwar, T., & Kurunthachalam, A. (2025). A Vision Transformers Approach for Surgical Monitoring with Algorithmic Framework and Experimental Evaluation. *2025 International Conference on Biomedical Engineering and Sustainable Healthcare (ICBMESH)*, 1–6. <https://doi.org/10.1109/icbmesh66209.2025.11182237>.
7. Turban, E., & King, D. (2018). *Introduction to information systems: Supporting and transforming business*. Wiley.
8. Valivarthi, D. T., Kethu, S. S., Natarajan, D. R., Narla, S., Peddi, S., & Kurunthachalam, A. (2025). Enhanced Medical Anomaly Detection Using Particle Swarm Optimization-based Hybrid MLP-LSTM Model. *International Journal of Pattern Recognition and Artificial Intelligence*. <https://doi.org/10.1142/s0218001425570228>.
9. Vallu, V. R., Pulakhandam, W., & Kurunthachalam, A. (2025). Revolutionizing Mobile Cloud Security: Employing Secure Multi-Party Computation and Blockchain Innovations for E-Commerce Platforms. *2025 International Conference on Artificial Intelligence and Emerging Technologies (ICAIET)*, 1–6. <https://doi.org/10.1109/icaiet65052.2025.11211015>.
10. Vallu, V. R., Pulakhandam, W., Jagathpally, A., Shahwar, T., & Kurunthachalam, A. (2025). Object Recognition and Collision Avoidance in Robotic Systems Using YOLO and HS-CLAHE Techniques. *2025 5th International Conference on Intelligent Technologies (CONIT)*, 1–6. <https://doi.org/10.1109/conit65521.2025.11166833>.
11. Vallu, V. R., Pulakhandam, W., Kurunthachalam, A., & Hugar, S. (2025). PR-MICA and SGELNN: A Unified Framework for Feature Extraction in Graph Learning. *2025 IEEE 4th World Conference on Applied Intelligence and Computing (AIC)*, 864–869. <https://doi.org/10.1109/aic66080.2025.11211928>.

12. Ahmed, S. T., Kumar, V. V., Singh, K. K., Singh, A., Muthukumaran, V., & Gupta, D. (2022). 6G enabled federated learning for secure IoMT resource recommendation and propagation analysis. *Computers and Electrical Engineering, 102*, 108210.
13. Ahmed, S. T., Kumar, V. V., & Kim, J. (2023). AITel: eHealth augmented-intelligence-based telemedicine resource recommendation framework for IoT devices in smart cities. *IEEE Internet of Things Journal, 10*(21), 18461-18468.
14. Pasha, A., Ahmed, S. T., Painam, R. K., Mathivanan, S. K., Mallik, S., & Qin, H. (2024). Leveraging ANFIS with Adam and PSO optimizers for Parkinson's disease. *Heliyon, 10*(9).
15. Muthukumaran, V., Vasudevan, S., & Siddiqha, S. A. (2023). Secure Public Key Cryptosystem for in Smart City using Algebraic Structure. *International Journal of Human Computations & Intelligence, 2*(1), 20-25.
16. Kumar, A., Satheesha, T. Y., Salvador, B. B. L., Mithileysh, S., & Ahmed, S. T. (2023). Augmented Intelligence enabled Deep Neural Networking (AuDNN) framework for skin cancer classification and prediction using multi-dimensional datasets on industrial IoT standards. *Microprocessors and Microsystems, 97*, 104755.