

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/

183

RESEARCH ARTICLE OPEN ACCESS

Enhancing Real-Time Communication: A WebRTC-Based

Video Chat Application

Soumya Dhanappa . Sahnaz Parveen . Sanya Yadav . Naveen Chandra Gowda

School of Computer Science and Engineering

REVA University, Bengaluru, India

DOI: 10.5281/zenodo.10634598
Received: 21 October 2023 / Revised: 22 November 2023 / Accepted: 29 December 2023
©Milestone Research Publications, Part of CLOCKSS archiving

Abstract – Video chat applications are widely used for various purposes, such as social,

educational, and professional communication. However, developing a video chat

application can be challenging, as it requires handling complex issues such as network

latency, bandwidth, security, and compatibility. Web Real-Time Communication

(WebRTC) is a cutting-edge technology that enables peer-to-peer real-time

communication without the need for additional software or plugins. WebRTC is a set of

APIs and protocols that allow browsers and mobile applications to exchange audio, video,

and data streams directly, without relying on intermediate servers or platforms. In this

paper, we propose a video chat application that uses WebRTC and Node.js, a JavaScript

runtime environment that allows for fast and scalable network applications3. We describe

the design and implementation of our application, which consists of a web-based user

interface, a signaling server, and a peer connection manager. We also evaluate the

performance and usability of our application and compare it with other existing video chat

applications. We demonstrate that our application can provide high-quality, secure, and

user-friendly video chat services using WebRTC and Node.js

Index Terms – Web Real-Time Communication, Teleconferencing, Peer-To-Peer, Media

Stream, RTCPeerConnection.

I. INTRODUCTION

The use of video chat applications has become increasingly popular in recent years, with millions

of users worldwide relying on these platforms for communication and collaboration. However, the

development of such applications can be challenging, particularly when it comes to ensuring their

reliability and performance. The importance of this topic lies in its potential to address the limitations

of existing video chat applications, particularly in terms of their reliability and performance. By

exploring the use of WebRTC (Web Real Time Communication), Firebase platform, and Vite tool in

184

the development of video chat applications, this research aims to contribute to the advancement of this

field and provide valuable insights for beginners, developers, and users alike. We will explore the

process of deploying a Vite application using Firebase hosting. Vite, a fast and modern build tool for

JavaScript applications, combined with Firebase’s powerful hosting platform, provides beginners with

an effortless way to deploy their applications.

Fig. 1: Integrate Video and chat functionality with WebRTC, Socket.IO & Node.js[12]

II. LITERATURE SURVEY

Previous research on video chat applications has primarily focused on their design and user

experience, with less attention given to their development and implementation. However, there is a

growing interest in the use of WebRTC and Firebase platform in the development of real-time

applications, including video chat applications. Despite the growing interest in the use of WebRTC and

Firebase in the development of video chat applications, there is a lack of research on the specific

challenges and opportunities associated with this approach. There is a need for further investigation into

the technical and practical aspects of implementing these technologies in the development of reliable

and performant video chat applications. The development of reliable and performant video chat

applications is of critical importance, particularly in today's increasingly connected world. By exploring

the use of WebRTC using Firebase platform in the development of such applications, this research aims

to address the limitations of existing approaches and provide valuable insights for beginners,

developers, and users alike. The aim of this research is to investigate the potential of WebRTC, Firebase,

and Vite tools in the development of reliable and performant video chat applications, and to identify the

challenges and opportunities associated with this approach. Based on previous research and practical

experience, it is hypothesized that the use of WebRTC and Firebase platform in the development of

video chat applications using peer to peer service can improve their reliability and performance, and

that this approach can address some of the limitations of existing video chat applications.

It address the signaling issue or the use of a third-party service (Licode-Erizo) to run the

application [12]. Moreover, and point out that using MCU is very expensive and consumes a lot of

bandwidth. Some video conferencing codecs may support a limited number of multipoint connections

(e.g. up to 4 users), but this may not be enough for larger groups. Therefore, finding a scalable and cost-

effective solution for WebRTC signaling and multi-party communication remains an open challenge

[8]. Based on the related work reviewed above, it can be concluded that signaling between browser-to-

browser and server is not standardized in WebRTC.

185

III. PROPOSED WORK

It works like this the first peer will create an offer asking for another peer to connect to them this

will result in an STP object or session description protocol which contains information describing the

peer-to-peer connection like the video codes timing and so on. The data then will be saved in a server

where it can be read by another peer to answer the call which is achieved by creating an STP answer

and writing that to the server this process is known as SIGNALING and it is handled by their party

server. The signaling server allows the two parties to securely exchange the connection data but never

touches the media that’s actually transmitted between the peers .But here’s when the things get tricky

most devices in the real world sit behind firewalls and Ip addresses constantly change , thanks to

network address translation this makes peer to peer connection complicated from a networking

standpoint but luckily there’s a standard called INTERACTIVE CONNECTIVITY

ESTABLISHMENT or ICE which helps the clients coordinate the discovery of their public facing Ip

addresses . Now both peers will generate a list of ICE candidates which contain Ip address and port

which peer one can use to connect to peer two. In the background WebRTC will do this by making a

series of requests to a STUN SERVER. A stun server is not something you need to set up on your own

because there are many options out there from reliable sources like google. Each peer will save their

ICE candidate in the database where they can be read by the other peer. The algorithm will then

automatically determine which candidate is best and at which point real-time media can begin flowing

between the two peers.

Fig. 2: Breakdown of WebRTC signaling process

186

IV. IMPLEMENTATION AND RESULTS

For the implementation of this project, we need to install vite tool in our folder. So, we need to

type the Command: “npm init vite” as shown in terminal (Fig.3). Give project name and package name

as shown in below figure (3). After naming the project, in the explorer the folder gets created with the

required node modules. Then after giving project name, we can specify the specific framework required

and as well as the variant like TypeScript, JavaScript etc. Then change the folder and move to VIDEO

CALL. Now run command npm install: This command installs a package and any packages that it

depends on. If the package has a package-lock, or an shrink wrap file, or a yarn lock file, the installation

of dependencies will be driven by that, respecting the following order of precedence: npm-

shrinkwrap.json.

Fig. 3: Terminals

Next step before running the file we need to set up the firebase platform as it helps to make calls

and provides an interface and configuration. So, in the browser type www.firebase.com .Now in

Firebase create a project.

Fig. 4: Fire Base

Next step after creating a project we need to connect firebase to your web app. Follow the given

steps as given in fig.5 and fig.6.

http://www.firebase.com/

187

Fig.5. Fire Base

Fig.6. FireBase

Now you need to copy the code from firebaseconfig (Fig.7) and paste it into the main.js

file as shown below Fig.8:

Fig.7. FireBase

188

Fig.8. Terminals

Now in terminal run the command: npm run dev.

Fig.9. Terminals

Next click on the http link shown in the above Fig.9:

189

Fig.10. Web Browser

We can see there are two cameras local stream and remote stream and an option to create new call

and to join a call. We can join a call using another http page or device. Before we need to create a

firestore database to make the local stream and remote stream work. Create a firestore database as

shown in the below Fig.11.

Fig.11. FireStore Database in Firebase

Add two collections called answer Candidate for local stream user and after Candidate for remote

stream user (fig.11). Now from another browser the remote stream answers calls using the id created

and joins the call.

190

Fig.12. Web Browser

V. CONCLUSION

In conclusion, the project successfully leverages WebRTC to enable real-time audio and video

potential to build applications similar to Zoom or Skype. The implementation focuses on a 1-to-1 video

chat scenario, where peers communicate directly with each other, eliminating the need for an

intermediary server to handle video content. One of the key features of the project is the utilization of

a third-party server for signaling purposes. This server stores shared data for stream negotiation,

facilitating the exchange of information between peers. Firebase is specifically chosen for this role due

to its seamless integration with WebRTC. The decision to use Firebase is justified by its ability to handle

real-time updates to the database, ensuring efficient communication between peers.

By adopting WebRTC and integrating it with Firebase for signaling, the project not only

demonstrates the technical capabilities of enabling peer-to-peer communication but also highlights the

importance of a reliable and responsive signaling mechanism. This approach enhances the overall user

experience by providing a smooth and uninterrupted real-time communication channel. In summary,

the project effectively combines WebRTC for direct peer-to-peer communication and Firebase for

efficient signaling, showcasing a practical and scalable solution for building real-time audio/video

communication applications on the web.

REFERENCES

1. Damayanti, F. U. (2018). Research of web real-time communication-The unified communication platform using node.

js signaling server. Journal of Applied Information, Communication and Technology, 5(2), 53-61.

2. De Groef, W., Subramanian, D., Johns, M., Piessens, F., & Desmet, L. (2016, April). Ensuring endpoint authenticity

in webrtc peer-to-peer communication. In Proceedings of the 31st Annual ACM Symposium on Applied

Computing (pp. 2103-2110).

3. Ouya, S., Seyed, C., Mbacke, A. B., Mendy, G., & Niang, I. (2015, December). WebRTC platform proposition as a

support to the educational system of universities in a limited Internet connection context. In 2015 5th World Congress

on Information and Communication Technologies (WICT) (pp. 47-52). IEEE.

191

4. Sredojev, B., Samardzija, D., & Posarac, D. (2015, May). WebRTC technology overview and signaling solution

design and implementation. In 2015 38th international convention on information and communication technology,

electronics and microelectronics (MIPRO) (pp. 1006-1009). IEEE.

5. Jang-Jaccard, J., Nepal, S., Celler, B., & Yan, B. (2016). WebRTC-based video conferencing service for

telehealth. Computing, 98(1-2), 169-193.

6. Ahmed, S. T., Sreedhar Kumar, S., Anusha, B., Bhumika, P., Gunashree, M., & Ishwarya, B. (2020). A generalized

study on data mining and clustering algorithms. New Trends in Computational Vision and Bio-inspired Computing:

Selected works presented at the ICCVBIC 2018, Coimbatore, India, 1121-1129.

7. Carullo, G., Tambasco, M., Di Mauro, M., & Longo, M. (2016, January). A performance evaluation of WebRTC over

LTE. In 2016 12th Annual Conference on Wireless On-demand Network Systems and Services (WONS) (pp. 1-6).

IEEE.

8. Liao, Y., Wang, Z., & Luo, Y. (2016, October). The design and implementation of a WebRTC based online video

teaching system. In 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation

Control Conference (IMCEC) (pp. 137-140). IEEE.

9. Emmanuel, E. A., & Dirting, B. D. (2017). A peer-to-peer architecture for real-time communication using Webrtc. J

Multidiscipl Eng Sci Stud (JMESS), 3(4), 1671-1683.

10. Chiang, C. Y., Chen, Y. L., Tsai, P. S., & Yuan, S. M. (2014, June). A video conferencing system based on WebRTC

for seniors. In 2014 International Conference on Trustworthy Systems and their Applications (pp. 51-56). IEEE.

11. Ahmed, S. T., & Basha, S. M. (2022). Information and Communication Theory-Source Coding Techniques-Part II.

MileStone Research Publications.

12. Edan, N. M., Al-Sherbaz, A., & Turner, S. (2017, October). Design and evaluation of browser-to-browser video

conferencing in WebRTC. In 2017 Global Information Infrastructure and Networking Symposium (GIIS) (pp. 75-78).

IEEE.

13. Suciu, G., Stefanescu, S., Beceanu, C., & Ceaparu, M. (2020, June). WebRTC role in real-time communication and

video conferencing. In 2020 Global Internet of Things Summit (GIoTS) (pp. 1-6). IEEE.

14. Al-Shammari, N. K., Alshammari, A. S., Albadarn, S. M., Ahmed, S. T., Basha, S. M., Alzamil, A. A., & Gabr, A.

M. (2021). Development of soft actuators for stroke rehabilitation using deep learning. International Journal of

Advanced and Applied Sciences, 8(11), 22-29.

15. Abidi, S., Suleman, S., Dhanush, V., & Harshith, J. M. WEBRTC BASED VIDEO CONFERENCE APP.

