

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you

give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and

indicate if changes were made. The images or other third party material in this article are included in the article’s

Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence,

visit http://creativecommons.org/licenses/by/4.0/

177

RESEARCH ARTICLE OPEN ACCESS

Efficient File Sharing System Utilizing

MongoDB and Node.js

Vinaykumar D . Vishal . Venakat Pranav . Vivek Yadav J N . Naveen Chandra

Gowda

School of Computer Science and Engineering

REVA University, Bengaluru, India.

DOI: 10.5281/zenodo.10634569
Received: 18 October 2023 / Revised: 19 November 2023 / Accepted: 21 December 2023

©Milestone Research Publications, Part of CLOCKSS archiving

Abstract – In today's digital era, efficient file sharing has become a vital component for

businesses and individuals alike. With the rapid growth in data volume and complexity, an

effective file sharing system has to be robust, scalable, and secure. This is where MongoDB

and Node.js come into play. MongoDB, a NoSQL database, offers high-performance data

storage and retrieval solutions, while Node.js, a JavaScript runtime environment, delivers

seamless server-side performance. By leveraging the power of MongoDB and Node.js

together, an efficient file sharing system can be built to meet the rigorous demands of

modern applications and businesses. From cloud-based storage solutions to peer-to-peer

networks, these systems encompass a diverse range of technologies and architectures, each

catering to specific user needs and preferences.

Index Terms – File Sharing, MongoDB, Node.js, Express (web framework), Mongoose

(MongoDB ORM), and Multer

I. INTRODUCTION

File Sharing involves distributing or sharing or accessing of data. MongoDB, a NoSQL database [1],

is utilized for storage and retrieval of file metadata, with a focus on flexibility and adaptability to varying

file attributes [2]. Node.js, a server-side runtime [3], enhances the application's responsiveness through

its event-driven architecture, contributing to file operations [4]. The architecture includes robust user

authentication and authorization mechanisms, and access control [5]. Node.js, serving as the server-side

logic, utilizes popular packages and frameworks for scalability and resilience [6]. Real-time updates and

notifications are achieved through Node.js' event-driven communication, utilizing WebSocket technology

for efficient data exchange between server and clients [8]. This study underscores the advantages of the

MongoDB-Node.js stack in building a flexible, scalable, and real-time file-sharing application,

contributing valuable insights for practical implementations [9].

178

Applications

 Collaboration: File sharing is essential for collaborative work, allowing teams to access and

edit documents in real-time. Remote Work: With the rise of remote work, file sharing

facilitates access to work-related files from different locations.

 Media Distribution: Artists, musicians, and content creators use file sharing to distribute their

work to a global audience. Education: Educational institutions use file sharing for distributing

learning materials and resources to students.Business Communication: File sharing supports

communication in business environments, enabling the exchange of proposals, reports, and

other documents.

Peer-to-Peer (P2P) Networks: Users share files directly with each other without the need for a

centralized server. BitTorrent is a popular P2P file-sharing protocol. Cloud Storage Services: Files are

uploaded to centralized servers in the cloud, and users can access, download, or share these files from

anywhere with an internet connection. Examples include Google Drive, Dropbox, and OneDrive. Email

and Messaging Platforms: Files can be shared as attachments through email or messaging apps, although

there are often limitations on file size.

II. LITERATURE SURVEY

The evolution of file sharing technologies has witnessed a shift from traditional protocols like FTP

and HTTP towards more contemporary, scalable solutions [1].MongoDB's role as a NoSQL database

is well-established for its flexibility in handling diverse data types, making it suitable for storing file

metadata without rigid schemas [2].MongoDB's GridFS for managing large files, breaking them into

smaller chunks for efficient storage and retrieval [3].Node.js, known for its event-driven and non-

blocking I/O model, contributes to responsive file operations in server-side runtime [4].Studies

highlight MongoDB's capabilities in securely storing user credentials and managing access controls,

critical for secure file sharing systems [5].The Node.js ecosystem, rich in packages and frameworks, is

explored for server-side logic implementation, streamlining development and enhancing scalability

[6].Literature emphasizes the importance of load balancing and horizontal scaling strategies in ensuring

optimal performance under varying workloads and accommodating growing user bases [7].

Real-time communication capabilities, facilitated by Node.js using WebSocket technology, are

discussed for efficient data exchange between the server and clients [8].Research underscores the

significance of security in file-sharing systems, exploring encryption protocols, access controls, and the

delicate balance between user convenience and data protection [9].Emerging trends in file sharing

explore decentralized systems, with blockchain technologies gaining attention for their potential in

providing secure and tamper-proof file-sharing solutions [10].the role of cloud computing in file

sharing, analyzing the benefits and challenges of cloud-based solutions in enhancing accessibility and

collaboration [11].The importance of interoperability and standardization in file sharing is highlighted,

aiming to improve the efficiency and accessibility of systems across different platforms [12].Case

studies and practical implementations of file sharing systems using MongoDB and Node.js are explored,

providing insights into real-world applications and challenges [13].Some studies delve into performance

179

benchmarks of MongoDB and Node.js in file sharing scenarios, evaluating their efficiency and

scalability under various conditions [14].The literature recognizes challenges such as data consistency,

latency, and evolving security threats, calling for ongoing research to address these issues and exploring

new avenues in file sharing [15].

Over the past few years, there has been a surge in the development of efficient file-sharing systems

to facilitate distributed work environments and data management. MongoDB and Node.js have emerged

as popular choices for creating such systems due to their intrinsic features, scalability, and ease-of-use

(Lebson, et al., 2020). MongoDB, a NoSQL database used for managing document-oriented storage of

files, is viewed as an ideal candidate for implementing scalable file-sharing applications (Kim, Eunji,

and In Bum Chung, 2016). In contrast to traditional relational databases (e.g., MySQL), MongoDB

offers high performance and horizontal scaling that is pivotal in constructing file-sharing applications

for both local and global users.

Node.js is an open-source runtime environment that allows JavaScript execution on the server-

side, making it suitable for building scalable network applications (Tilkov & Vinoski, 2010). Its non-

blocking I/O model enhances throughput and efficiency necessary for contemporary data-intensive real-

time applications. As a result, Node.js has proven to be a feasible solution for developing a low-latency

file-sharing system complemented by MongoDB's ability. In recent literature, Chethiya et al. (2019)

proposed a cloud-based file-sharing system using MongoDB with Node.js in an academic context.

Results showed that storage availability increased by using smaller chunks of files within this system

while maintaining the integrity of those files. Furthermore, El-Basioni et al. (2019) designed an

experimental video-sharing website named "Videos Mongo" powered by MongoDB and Node.js; this

application showcased the system's capabilities to store various types of video content.

III. PROPOSED SOLUTIONS

Implementing file sharing using MongoDB and Node.js involves creating a system that allows

users to upload, store, and retrieve files using a web application. the key components and steps involved:

 Setting Up the Environment:Node.js and npm: Ensure Node.js and npm are installed on

your server. These tools will allow you to run JavaScript on the server-side and manage

packages.

 MongoDB: Install and set up MongoDB to store metadata about uploaded files.

 Creating the Project Structure: Organize your project with a structure that includes

directories for routes, models, views, and public files.

 Setting Up Dependencies: Use npm to install necessary packages like Express (web

framework), Mongoose (MongoDB ORM), and Multer (file upload middleware).

 Setting Up MongoDB Connection: Connect your Node.js application to MongoDB using

Mongoose. This involves defining a connection string and handling events for success or

error.

 Configuring Multer for File Uploads: Multer is used to handle file uploads. Configure it to

specify the destination directory and the naming strategy for uploaded files.

180

 Defining MongoDB Schema: Create a Mongoose schema to define how file metadata will

be stored in the MongoDB database.

 Creating Routes for File Handling: Define routes in your server.js file to handle file uploads

and downloads. Use the Multer middleware for file uploads.

 Handling File Uploads and Downloads:

Implement logic to handle file uploads by saving metadata to MongoDB and storing the

actual file in the 'uploads/' directory.Implement logic to handle file downloads by retrieving

file details from MongoDB and sending the file to the client.

 Creating the Frontend: Develop a simple HTML form for users to upload files. This step

is optional, as you can use alternative methods like API calls for file uploads.

 Running the Application: Start your Node.js server to run the application.

 Testing: Test the file-sharing functionality by uploading and downloading files through

your application.

Fig. 1: Implementation of an Efficient File Sharing

IV. IMPLEMENTATION AND RESULTS

We analysed the time it took to upload and download files of various sizes, ranging from small

documents to large multimedia files. The results showed that the system consistently achieved high

speeds, even when handling large files. This indicates that the MongoDB and Node.js combination

provides an efficient framework for file sharing. Results highlight the effectiveness of utilizing

MongoDB and Node.js in developing an efficient file sharing system. The combination of these

technologies enables fast and reliable file transfers, even under high user loads. The system's scalability

empowers it to accommodate a growing user base, while its reliability ensures uninterrupted access and

sharing of files. With these findings, we can confidently recommend the adoption of MongoDB and

Node.js for building a high-performance file sharing system.

181

Fig. 2: package. Json code of file sharing.

Fig. 3: The execution and displaying file sharing link.

V. CONCLUSION

In conclusion, an efficient file sharing system utilizing MongoDB and Node.js can greatly improve

the performance and scalability of data storage and retrieval processes. Leveraging the power of these

technologies together enables easy management of large volumes of data, while maintaining a fast and

interactive user experience. By choosing this stack for creating a file sharing system, developers can

182

enjoy better flexibility, reliability, and adaptability to various use cases, ensuring a future-proof solution

for the ever-evolving world of digital data storage and sharing.

REFERENCES

1. Comer, D. E. (2006). Internetworking with TCP/IP: Principles, Protocols, and Architecture. Pearson Education.

2. Chodorow, K. (2013). MongoDB: The Definitive Guide. O'Reilly Media.

3. Grol, B., & White, C. (2014). Pro MongoDB Development. Apress.

4. Wilson, J. (2018). Node.js Design Patterns - Second Edition. Packt Publishing.

5. Hawkes, M. (2015). Node.js Design Patterns. Packt Publishing.

6. Raj, S. (2016). Learning Node.js for Mobile Application Development. Packt Publishing.

7. Raj, S. (2018). Node.js Web Development - Fifth Edition. Packt Publishing.

8. Shigeta, S. (2015). Node.js By Example. Packt Publishing.

9. Stallings, W. (2017). Cryptography and Network Security: Principles and Practice. Pearson Education.

10. Swan, M. (2015). Blockchain: Blueprint for a New Economy. O'Reilly Media.

11. Mell, P., & Grance, T. (2011). The NIST Definition of Cloud Computing (NIST Special Publication 800-145).

National Institute of Standards and Technology (NIST).

12. ISO/IEC JTC 1/SC 27. (2019). Information technology — Security techniques — Code of practice for

information security controls (ISO/IEC 27002:2013). International Organization for Standardization (ISO).

13. Case studies and practical implementations from industry and academic sources.

14. Performance benchmark studies on MongoDB and Node.js in file-sharing scenarios.

15. Ahmed, S. T., & Basha, S. M. (2022). Information and Communication Theory-Source Coding Techniques-Part

II. MileStone Research Publications.

16. Basha, S. M., Poluru, R. K., & Ahmed, S. T. (2022, April). A Comprehensive Study on Learning Strategies of

Optimization Algorithms and its Applications. In 2022 8th International Conference on Smart Structures and

Systems (ICSSS) (pp. 1-4). IEEE.

17. Fathima, A. S., Prakesh, D., & Kumari, S. (2022). Defined Circle Friend Recommendation Policy for Growing

Social Media. International Journal of Human Computations & Intelligence, 1(1), 9-12.

