

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of
this licence, visit http://creativecommons.org/licenses/by/4.0/

143

RESEARCH ARTICLE OPEN ACCESS

Stop and Wait Protocol Using Python

Shivaraj L S . Likhith G . Yashas Kumar S . Omkar S . Naveen Chandra Gowda

School of Computer Science and Engineering

REVA University, Bengaluru, India

DOI: 10.5281/zenodo.10254217
Received: 18 October 2023 / Revised: 16 November 2023 / Accepted: 01 December 2023

©Milestone Research Publications, Part of CLOCKSS archiving

Abstract – The Stop and Wait protocol is a widely used method for achieving reliable data

transmission in an unreliable communication channel. This protocol ensures data accuracy

by utilizing acknowledgments and retransmission. This abstract presents an implementation

of the Stopand Wait protocol using Python. The process involves establishing a connection

between a sender and receiver, dividing the data into packets, and transmitting them one at

a time. The sender waits for acknowledgments from the receiver and retransmits any lost

packets. The receiver verifies the integrity of the received packets and sends

acknowledgments to the sender. This iterative process continues until all data is

successfully transmitted. The Python implementation provides a practical and versatile

approach for simulating and testing reliable data transmission, enabling developers to

evaluate the protocol's effectiveness and performance under different conditions and

network scenarios.

Index Terms – Socket programming, Server –side, Client-side, Stop -Wait-Mechanism,

Packet Structure, Error Handling, Low-Bandwidth Networks, Serial Communication, CRC

Generator

I. INTRODUCTION

Stop and wait protocol is an error control protocol, in this protocol the sender sends data packets

one at a time and waits for positive acknowledgment from the receiver’s side, if acknowledgment is

received then the sender sends the next data packet else it’ll resend the previous packet until a positive

acknowledgment is not received. Whenever packets of data need to be transmitted from point A (the

transmitter) to point B (the receiver), there is always a chance that something bad happens to them while

they move through the medium between A and B (the channel): some packets may be corrupted or even

144

lost entirely. To cope with this, ARQ (Automatic Repeat Request) protocols have been used to provide

a more reliable way of communication between the transmitter and the receiver.

Applications

 Low-Bandwidth Networks: Essential in low-data-rate environments, ensuring reliable transmission

with acknowledgment.

 Serial Communication: Used in serial communication to guarantee accurate one-bit-at-a-time data

delivery.

Where it is required

The Stop-and-Wait protocol is required to ensure reliable data transmission in situations where

acknowledgment of successful reception is necessary before sending the next piece of data. This

prevents data loss, corruption, and helps maintain the order of transmitted information, making it

suitable for scenarios where reliability is prioritized over high throughput.

Why it is required

The Stop-and-Wait protocol is a simple flow control mechanism used in communication systems.

It ensures reliable data transfer by having the sender wait for an acknowledgment from the receiver

before sending the next piece of data. This approach prevents data loss and maintains the sequential

order of transmitted information. While straightforward, it may not be the most efficient for high-

throughput scenarios, but it finds applications in low-bandwidth networks, serial communication, and

situations where reliability is paramount.

II. LITERATURE SURVEY

The stop and wait protocol is a simple error control protocol that is used to ensure reliable data

transmission over unreliable channels. It works by transmitting data one packet at a time and waiting

for an acknowledgment (ACK) from the receiver before transmitting the next packet. If the sender does

not receive an ACK within a certain time period, it will retransmit the packet. The stop and wait protocol

is simple to implement and understand, but it is not very efficient. This is because the sender must wait

for an ACK from the receiver before transmitting the next packet, which can lead to long delays. There

are a number of Python implementations of the stop and wait protocol available. One popular

implementation is the stop and wait module, which is available on the Python Package Index. The stop

and wait module provides a simple and easy-to-use interface for implementing the stop and wait

protocol.

Another popular Python implementation of the stop and wait protocol is the srpc module, which

is also available on the Python Package Index. The srpc module provides a more sophisticated

implementation of the stop and wait protocol than the stop and wait module. The srpc module supports

a number of features that are not available in the stop and wait module, such as flow control and

congestion control. The stop and wait protocol is a useful tool for implementing reliable data

transmission over unreliable channels. It is simple to implement and understand, but it is not very

145

efficient. There are a number of Python implementations of the stop and wait protocol available,

including the stop and wait module and the srpc module.

Fig. 1: working of stop and wait protocol

III. PROPOSED WORK

After studying the various techniques used to perform encipherment, we have done the comparison

based on the following important factors: Error is introduced as follows :Generate a random number,

say r1. Perform r1 % 2. If you get a 0 do not introduce error and send original bits. If you get a 1,

introduce error.To decide which bit will be in error, generate another random number, say r2. Perform

r2 %(size of received frame). Assume you get a value i as the outcome. Flip the i-th bit. Now send it to

the receiver. Modulo two-division is required to calculate the CRC.configuration data that are shared

by the reciver and the sender.

Client: The client class will have five methods. Constructor: To connect to the server using a

socket at the given IP address and port number. asciiToBin: To convert ASCII string to binary string.

appendZero: To append (k – 1) 0’s to the end of binary data. encode: To generate and append CRC at

the end of actual data bits. sendfile : This method reads n characters from the input file at a time

&Creates the data packet to be sent by calling the encode method.Calls induce_error method to

randomly introduce an error in the data packet.Sends the data packet and waits for the

acknowledgment.If the acknowledgment received is positive, then move on to the next n bits,else resend

the current data packet.When the file is completely read, then send a flag to tell the receiver to stop

waiting for the next frame.Terminate the session.

Server: The server class will have six methods.Constructor: To listen for client request at the

given IP address and port number. iszero : To determine if a string represents 0.isCurrupted : To

determine if the received data is corrupted by performing modulo 2 division by the

CRC_GENERATOR.decode : To extract the data bits from the received data packet and convert them

to their ASCII values.log : To log the entry of each frame in the logfile.

146

receive_file : This method receives the data packet from the sender &Checks its validity by calling

the is Currupted function. If the data packet is valid, then it decodes it and copies it in a file at server’s

end and sends a positive acknowledgement to the sender and logs the entry of the data packet in the

logfile .else, it sends a negative acknowledgement to the sender. If the received data packet is the end

of file, then it terminates all the connections and returns.

IV. RESULTS AND PERFORMANCE EVALUATION

Fig. 2: log file showing input and output

Input and output files should match. A log file should show how many frames were in error and

how many retries were done for each frame.

V. CONCLUSION

The Stop and Wait protocol is a reliable method for transmitting data between a sender and

receiver in an unreliable communication channel. By using acknowledgments and retransmission, it

ensures that data is accurately delivered. Implementing the protocol in Python involves establishing a

connection, splitting the data into packets, and sending them one at a time. The sender waits for

acknowledgments from the receiver and resends any lost packets. The receiver checks the integrity of

the received packets and sends acknowledgments to the sender. This process continues until all data is

successfully transmitted. Implementing the Stop and Wait protocol in Python allows for effective testing

and simulation of reliable data transmission.

147

REFERENCES

1. A. Prasetyo, “Stop-and-Wait ARQ,” Dunia Informatika, [Online]. Available:

http://duniainformatikaindonesia.blogspot.co.id/2013/03/Stop-and-Wait-arq.html. [Diakses 30 7 2016].

2. Ramadhan, Z., & Siahaan, A. P. U. (2016). Stop-and-Wait ARQ Technique for Repairing Frame and

Acknowledgment Transmission. International Journal of Engineering Trends and Technology, 38(7), 384-387.

3. Varthis, E. G., & Fotiadis, D. I. (2006). A comparison of stop-and-wait and go-back-N ARQ schemes for IEEE 802.11

e wireless infrared networks. Computer communications, 29(8), 1015-1025.

4. Ramadhan, Z., & Siahaan, A. P. U. (2016). Stop-and-Wait ARQ Technique for Repairing Frame and

Acknowledgment Transmission. International Journal of Engineering Trends and Technology, 38(7), 384-387.

5. Raja, D. K., Kumar, G. H., Basha, S. M., & Ahmed, S. T. (2022). Recommendations based on integrated matrix time

decomposition and clustering optimization. International Journal of Performability Engineering, 18(4), 298.

6. Bukate, R. R. (2014). PM Ingale dan US Shid,“ARQ Strategies and Protocols for Relay Co-operative

System,”. International Journal For Advance Research In Engineering And Technology, 2(11), 24-28.

7. Ahmed, S. T., & Basha, S. M. (2022). Information and Communication Theory-Source Coding Techniques-Part II.

MileStone Research Publications.

8. I. Ma'ruf, “Prinsip Kerja Stop-and-Wait Flow Control,” Blogspot, [Online]. Available:

http://irham93.blogspot.co.id/2013/06/prinsip-kerja-Stop-and-Wait-flow-control.html. [Diakses 30 7 2016].

